时间复杂度及空间复杂度为算法效率分析中的时间效率和空间效率,计算复杂度时,使用大O的渐进表示法
- 考虑算法最坏情况下的时间复杂度
- 常数1取代运行时间的加法常数
- 修改后只保留最高次项
- 去除最高阶项的系数
如:执行次数为 N*(N+1)/2,时间复杂度为O(N^2)
. 时间复杂度
下图中趋势越缓,其时间复杂度越小,代表的算法效率越高
二分查找的时间复杂度
最坏情况下查找次数为x,有 2^x=N,x=log2N,故时间复杂度为O(log2N),从图中可以看出 O(log2N) 的复杂度仅仅大于 O(1),二分查找算法的效率是很高的
斐波那契数列时间复杂度
.空间复杂度
斐波那契数列的空间复杂度
long long* fibarr = (long long*)malloc((n+1)*sizeof(long long));
为斐波那契数列申请了有N个数的数组,空间复杂度为O(N)
递归求阶乘的空间复杂度
消耗 n 个栈帧,空间复杂度为O(N),但递归算法效率并不高,栈空间并不大,n稍微一大,就会导致栈溢出
递归斐波那契的空间复杂度
执行递归时,程序会先从 Fib(N) 开始将最外侧的递归线走到底,调用n层空间,后续每次递归使用的空间与之前调用的空间是同一块,并不会调用新的空间,最多使用n层空间,空间复杂度为O(N)
- 空间可以重复利用,而时间是可累计的