📘 智能手表关键技术评估报告
产品名称:Aurora Watch S1 智能手表
编写日期:2025年5月6日
版本号:v1.0
编写人:XXX(技术负责人)

一、报告目的
本报告旨在对智能手表核心技术模块进行全面评估,识别项目研发过程中可能存在的技术风险、供应链瓶颈和开发难点,并为架构设计和资源分配提供决策依据。
二、关键技术模块识别
序号 | 技术模块 | 简要说明 |
---|
1 | 主控SoC | 负责蓝牙通信、传感器控制、系统调度等 |
2 | BLE通信栈 | 支持BLE 5.0/5.1规范,确保低功耗稳定连接 |
3 | 健康算法 | 心率、血氧、睡眠等核心健康指标的采集与计算 |
4 | OTA无线升级 | 支持远程固件升级,确保后期维护与优化能力 |
5 | 运动识别算法 | 步态识别、运动类型判断、卡路里计算等 |
6 | UI交互系统 | 屏幕显示、滑动逻辑、表盘渲染与系统动画响应 |
7 | 电源与续航管理 | 待机功耗、睡眠电流、快速充电策略等 |
8 | APP联动机制 | 与Android/iOS平台通信、通知、数据同步 |
三、关键技术模块评估
3.1 主控SoC方案评估
指标项 | 方案A:EFR32BG22(Silicon Labs) | 方案B:Apollo4 Blue(Ambiq) |
---|
功耗表现 | ★★★★★(极低功耗,深睡<1μA) | ★★★★☆(较低功耗,性能较强) |
BLE稳定性 | ★★★★★(官方协议栈成熟) | ★★★★(需外接BLE RF) |
成本 | 中(¥12~15) | 高(¥18~25) |
社区支持 | 中等 | 较少 |
推荐结论 | ✅推荐(适合成本敏感的中端产品) | 适用于高性能/屏幕复杂场景 |
3.2 BLE协议栈与配对机制
- 使用方案:Silicon Labs BGAPI Stack / 自研HAL
- 挑战点:稳定断连重连、OTA过程BLE干扰、兼容Android/iOS差异
- 建议:BLE连接层需引入状态机+掉线自动恢复机制;确保MTU配置动态调整
3.3 健康监测与算法支持
项目 | 评估内容 | 结论 |
---|
心率 | 光电PPG + 滤波 + 峰值检测 | 自研难度中等,可外包 |
血氧 | 双LED波长 + 算法拟合 | 建议外购成熟算法 |
睡眠识别 | 基于HRV、活动强度判断 | 精度取决于传感器灵敏度 |
供应商 | 华米WearHealth、好轻、BeneCheck等 | 建议引入外部算法+白盒调参 |
3.4 OTA无线升级
3.5 UI与表盘系统评估
项目 | 评估结果 |
---|
屏幕刷新率 | 60Hz AMOLED,图形切换平滑 |
表盘引擎 | 自研矢量绘制系统+图片缓存机制 |
动画响应时间 | 要求<300ms |
多语言支持 | 支持UTF-8字库,建议使用字体压缩包 |
风险点 | 内存占用高,需优化图层结构 |
3.6 电源与功耗优化
模块 | 技术难点 | 建议优化策略 |
---|
PPG传感器 | 采样频繁,功耗高 | 动态采样频率调节(休眠时降低频率) |
BLE连接 | 定期广播需稳定唤醒系统 | 设置合理连接间隔与广播周期 |
系统主频 | 动态频率调节(DVS) | 使用低功耗模式 + 定时唤醒 |
电池管理 | 250mAh电池续航7天目标 | 睡眠时段强制关闭非必要模块 |
四、集成难点与风险分析
关键点 | 风险等级 | 风险描述 | 建议措施 |
---|
BLE兼容性 | 高 | Android低版本兼容差,iOS连接稳定性问题 | 建立测试矩阵,QA全平台验证 |
算法精度 | 中 | 睡眠/血氧判定精度易受干扰 | 加强数据采样滤波与模型训练 |
OTA失败保护 | 高 | 升级失败可能导致设备变砖 | 引入Bootloader双分区/回滚机制 |
UI动画流畅性 | 中 | 屏幕响应卡顿影响体验 | 优化帧缓存与图形渲染结构 |
五、技术路线推荐总结
模块 | 推荐方案 | 备注 |
---|
主控芯片 | EFR32BG22 | 成熟低功耗SoC方案 |
通信协议 | BLE 5.1 + BGAPI协议栈 | 兼容Android/iOS |
OTA机制 | 自定义DFU + Bootloader分区 | 支持签名校验与断点续传 |
健康算法 | 外部合作算法模块+自研接口层 | 降低算法开发风险 |
UI表盘系统 | 自研轻量级图形框架 | 满足低RAM环境下流畅渲染 |
喜欢的盆友可以点赞收藏加关注,不迷路!!希望该文能对您的开发有点启发~~