tensorflow
hopyGreat
这个作者很懒,什么都没留下…
展开
-
TensorFlow配置GPU的分配设置方法
1. 多GPU情况下,使用指定GPU# 在Python代码中import osos.environ["CUDA_VISIBLE_DEVICES"] = "0"2. 设置GPU占用量config = tf.ConfigProto()config.gpu_options.per_process_gpu_memory_fraction = 0.9 # 占用GPU90%的显存ses...原创 2019-12-19 15:54:08 · 468 阅读 · 0 评论 -
Tensorflow实现条件随机场
不讲原理,不将原始代码实现,一切都从调用tensorflow出发。只有示例,没有讲解。代码参考:TensorFlow-GitHubimport numpy as npimport tensorflow as tf# 输入 batch=3, max_words=6, embedding=4x = np.random.randn(3, 6, 4)x[1, 4:] = 0x...原创 2019-08-28 11:16:38 · 494 阅读 · 0 评论 -
TensorFlow实现RNN
参考文章:知乎 - tf.nn.dynamic_rnn 详解简单提一下,用TensorFlow实现RNN系列结构,基本就是定义一个cell,然后调用一个RNN函数,就获得输出了。而且,cell定义成什么类型基本就是什么类型的RNN了。一、TensorFlow关于RNN函数的定义tf.nn.dynamic_rnn( cell, ...原创 2019-07-17 17:38:42 · 977 阅读 · 0 评论 -
简单感受一下tensorflow中axis的使用
很潦草的感受一下,不要认真。假设我这里有个二维tensor - x,shape=[2, 3];那么如果进行某类带有axis=0这样的操作,如tf.reduce_max(a, axis=0).那就理解为:for (int i = 0; i < x.shape[1], ++ i) { y[i] = max(x[*, i]);}不好理解?看看实际运行效果:x...原创 2019-01-09 22:42:00 · 597 阅读 · 0 评论 -
tensorflow中高维度矩阵的乘法
简单看个例子:这里的结果是怎么来的呢?仔细分析下,不难得出:21 = 10 * 0.1 + 100 * 0.2,86 = 20 * 0.3 + 200 * 0.4, 所以,虽然变成三维了,但实际还是做的二维运算。高于二维的维度,挨个遍历,便可得到一个二维矩阵,对这两个二维矩阵进行线性代数里的矩阵乘法。这样就要求了两个高维矩阵相乘必须满足的一些维度关系了。对于两个...原创 2019-01-12 11:32:01 · 5588 阅读 · 0 评论 -
去噪自编码器
import numpy as npimport tensorflow as tf# 使用Xavier初始化器进行权重初始化 它的特点是根据某一层网络的输入,输出节点数量自动调整最合适的分布# 从数学的角度分析 Xavier就是让权重满足均值为0, 同时方差为(2/(n_input + n_output))# 分布可以使用均匀分布或者高斯分布# 如下代码所示,通过tf.random_...原创 2018-11-04 10:52:47 · 1804 阅读 · 1 评论 -
importError: DLL load failed: 找不到指定的模块。
一个月之前在本机(python3.6.1)安装windows-cpu版tensorflow(1.10.0版本)结果在导入的时候报错了。说DLL文件引入失败,找不到对应的模块,搜寻了一圈发现好像windows上的tensorflow只支持python3.5。然后就重装了python,换成了3.5.4版本的。然后安装tensorflow-1.10.0。安装成功,也可以正常使用。今天又去...原创 2018-10-10 15:40:18 · 3173 阅读 · 0 评论 -
tf.while_loop使用list参数
tensorflow使用计算图的模型,所以常规for循环在tensorflow其实是不起作用的。所以tensorflow提供了while_loop函数:tf.while_loop( cond, body, loop_vars, shape_invariants=None, parallel_iterations=10, back_prop=...原创 2018-10-19 14:27:37 · 2779 阅读 · 0 评论 -
关于tf.image.resize_images的一个小问题
首选我们需要加载一张原图,然后使用对应格式解码,从而得到图像对应的三维矩阵image_raw_data = tf.gfile.FastGFile('pic.jpg', 'r').read()img_data = tf.image.decode_jpeg(image_raw_data)由于我这里的图片是jpg格式的,因此使用了decode_jpeg,TensorFlow还提供了tf.im...原创 2018-08-11 17:37:07 · 7463 阅读 · 2 评论 -
TensorFlow对cnn的支持
TensorFlow对cnn的支持对卷积的支持卷积层最重要的部分是卷积核,也被称为过滤器。卷积核可以将当前层神经网络上的一个子节点矩阵转换为下一层神经网络上的一个单位节点矩阵。单位节点矩阵是指长和宽都为1,但深度不限的节点矩阵。 在一个卷积层中,过滤器所处理的节点矩阵的长和宽都是由人工指定的,这个节点矩阵的尺寸也被称为过滤器的尺寸。 常用的顾虑器尺寸有3*3 和 5*5的。由于过滤...原创 2018-08-06 22:31:07 · 321 阅读 · 0 评论 -
tensorflow持久化
tensorflow持久化tensorflow代码运行完后就会自动退出,不会主动保存本次训练结果,如果我们花了很大的精力训练了一次结果,而没有保存,下一次又需要这个模型的时候又要花费同样的尽力来再一次训练,这显然是不可接受的。 为了让训练结果可以重复使用,需要将训练得到的神经网络模型持久化。持久化tensorflow提供了一个非常简单的API来保存和还原一个神经网络模型,这个AP...原创 2018-07-06 00:35:48 · 403 阅读 · 2 评论 -
tensorflow变量管理
在tensorflow中有时会将某个部分独立出来成为一个函数,比如把前向传播函数提取出来,成为一个独立的接口,这时就需要传递一定的调用参数,如隐藏层权重,偏置项等。当神经网络的结构非常复杂,参数更多时,就需要一个更好的方式来出传递和管理神经网络中的参数。 TensorFlow提供了通过变量名称来创建或获取一个变量的机制,通过这个机制,在不同的函数中可以直接通过变量名来获取变量,而不是将变量通过参...原创 2018-06-09 20:23:34 · 1679 阅读 · 2 评论 -
MNIST入门
这里倒是没有讲MNIST数据集的概念,具体可以参见这篇文章:MNIST机器学习入门这里只是将文中所述的预测代码简单实现了下:import tensorflow as tfimport numpy as npfrom tensorflow.examples.tutorials.mnist import input_data# 下载数据mnist = input_data.re...原创 2018-06-05 17:16:26 · 305 阅读 · 0 评论 -
tensorflow起步
下面这段Python代码生成了一些三维数据 然后用一个平面拟合import tensorflow as tfimport numpy as np# 生成2*100的数据x = np.float32(np.random.rand(2, 100)) # 生成2*100的输入数据y_ = np.dot([0.1, 0.2], x) + 0.3 # 标准结果# 使用variable...原创 2018-06-04 18:27:11 · 222 阅读 · 0 评论