机器学习
Horcham
这个作者很懒,什么都没留下…
展开
-
FDA算法原理和python实现
FDA原理 FDA代码此次的数据来源为二进制文件t10k-images-idx3-ubyte,t10k-labels-idx1-ubyte,train-images-idx3-ubyte,train-labels-idx1-ubyte,分别为测试集数据、 测试集标签、 训练集数 据、训练集标签。读入数据之后,对数据进行标准化。代码如下:import numpy as npimport pand原创 2017-06-17 09:00:34 · 6202 阅读 · 1 评论 -
搬运: CVonline: 图像数据库(一) (更新于20190821)
CVonline:图像数据库按主题索引行动数据库农业属性识别自动驾驶生物/医药相机校准面部和眼睛/虹膜数据库指纹一般图像一般RGBD和深度数据集一般视频手,手抓,手动和手势数据库图像,视频和形状数据库检索 对象数据库人(静态和动态),人体姿势人员检测和跟踪数据库(另请参阅监视)遥感机器人场景或场所,场景分割或分类分割同时定位和映射监督和跟踪(另见人)...翻译 2019-08-21 15:22:59 · 7754 阅读 · 1 评论 -
单纯基于numpy实现的神经网络框架 : numpy-net
numpynetProject url: https://github.com/horcham/numpy-net/About numpynetNumpynet is a neural networks framework implemented by numpy.Its coding style is like Gluon of mxnet. It can do derivation ...原创 2019-08-19 18:02:27 · 668 阅读 · 0 评论 -
中国股票市场分析和建模的project : zystock
StockPredictionTools for getting and modeling Chinese stocks项目地址: https://github.com/horcham/StockPrediction/这是一个针对中国股票市场分析和建模的project,它的名字叫zystock, 它支持以下功能: 输入股票代码,自动获取该股票的所有历史数据 计算该股票的常用指标 快速...原创 2019-08-19 17:59:05 · 1733 阅读 · 0 评论 -
TSVM实现
# coding:utf-8import numpy as npimport sklearn.svm as svmfrom sklearn.externals import joblibimport picklefrom sklearn.model_selection import train_test_split,cross_val_scoreclass TSVM(object):...原创 2019-01-30 19:49:43 · 9566 阅读 · 16 评论 -
从贝叶斯方法谈到贝叶斯网络
从贝叶斯方法谈到贝叶斯网络0 引言 事实上,介绍贝叶斯定理、贝叶斯方法、贝叶斯推断的资料、书籍不少,比如《数理统计学简史》,以及《统计决策论及贝叶斯分析 James O.Berger著》等等,然介绍贝叶斯网络的中文资料则非常少,中文书籍总共也没几本,有的多是英文资料,但初学者一上来就扔给他一堆英文论文,因无基础和语言的障碍而读得异常吃力导致无法继续读下去则是非常可惜的(当转载 2017-09-26 17:23:35 · 1230 阅读 · 0 评论 -
机器学习之分类器性能指标之ROC曲线、AUC值
机器学习之分类器性能指标之ROC曲线、AUC值 分类器性能指标之ROC曲线、AUC值一 roc曲线1、roc曲线:接收者操作特征(receiveroperating characteristic),roc曲线上每个点反映着对同一信号刺激的感受性。横轴:负正类率(false postive rate FPR)特异度,划分实例中所有负例占所有负例的比例;(1-Specificity)...转载 2017-09-17 00:27:43 · 513 阅读 · 0 评论 -
交叉验证(Cross Validation)方法思想简介
交叉验证(CrossValidation)方法思想以下简称交叉验证(Cross Validation)为CV.CV是用来验证分类器的性能一种统计分析方法,基本思想是把在某种意义下将原始数据(dataset)进行分组,一部分做为训练集(train set),另一部分做为验证集(validation set),首先用训练集对分类器进行训练,在利用验证集来测试训练得到的模型(model),以此来转载 2017-09-16 23:59:55 · 501 阅读 · 0 评论 -
朴素贝叶斯法
朴素贝叶斯的基本思想是根据贝叶斯定理以及基于特征条件独立假设的分类方法。对于给定数据集,首先根据特征条件独立假设,学习输入XX和输出YY的联合概率分布P(X,Y)P(X,Y),然后基于此模型,对于输入xx,利用贝叶斯定理求出后验概率最大的输出yy。设输入空间χ⊆Rn\chi \subseteq \mathbf{R}^n为nn维向量的集合,输出空间为类标记集合γ={c1,c2,⋯,cK}\gam原创 2017-09-22 17:58:48 · 572 阅读 · 0 评论 -
LASSO推导及其在恒星光谱上的应用
岭回归与LASSO都是基于线性回归上的算法,由于采取回归时可能会出现$\bm{w}$过大而产生过拟合的情况,因而引入惩罚项,将$\bm{w}$的范数引入损失函数中。岭回归和LASSO回归的区别在于其采用的范数不同。岭回归(ridge regression)考虑线性回归模型,以平方误差作为损失函数,并引入$L_2$范数进行正则化,从而防止过拟合。而LASSO则将$L_2$范数替换为$L_1$范数,其更容易得到稀疏解原创 2017-06-26 15:34:14 · 524 阅读 · 0 评论 -
GBDT(MART) 迭代决策树入门教程 | 简介
转自http://blog.csdn.net/w28971023/article/details/8240756在网上看到一篇对从代码层面理解gbdt比较好的文章,转载记录一下:GBDT(Gradient Boosting Decision Tree) 又叫 MART(Multiple Additive Regression Tree),是一种迭代的决策树算法,该算法由多棵决策树组成,转载 2017-06-17 09:14:07 · 466 阅读 · 0 评论 -
搬运: CVonline: 图像数据库(二) (更新于20190821)
对象数据库 各种物体和场景的2.5D / 3D数据集(Ajmal Mian)3D对象识别立体数据集此数据集由9个对象和80个测试图像组成。(Akash Kushal和Jean Ponce)3D摄影数据集我们实验室捕获的十个多视图数据集(Yasutaka Furukawa和Jean Ponce)3D打印RGB-D对象数据集 - 带有groundtruth CAD模型和摄像机轨迹的5个对...翻译 2019-08-21 16:15:13 · 8737 阅读 · 0 评论