- 博客(6)
- 收藏
- 关注
原创 《机器学习》读书笔记6
第六章 支持向量机6.1 间隔与支持向量在样本空间中,可通过划分超平面来进行分类学习。划分超平面可通过如下线性方程来描述:其中w=(w1;w2;...;wd)为法向量,决定了超平面的方向,b为位移项,决定了超平面与原点之间的距离。距离超平面最近的几个样本点被称为“支持向量”(support vector),两个异类支持向量到超平面的距离之和被称为“间
2017-08-28 16:03:54 1902
原创 《机器学习》读书笔记5
第五章 神经网络5.1 神经元模型 M-P神经元(neuron)模型:神经元接收到来自n个其他神经元传递过来的输入信号,这些输入信号通过带权重的连接进行传递,神经元接收到的总输入值将与神经元的阈值(threshold)进行比较,然后通过“激活函数”(activation function)处理以产生神经元的输出。激活函数通常为阶跃函数或者sigmoid函数。 把多个神经元按照一
2017-08-04 23:59:21 845
原创 《机器学习》读书笔记4
第四章 决策树4.1 基本流程决策树(decision tree)主要用于分类学习任务,决策树的生成是一个递归过程。 4.2 划分选择决策树学习的关键是如何选择最优划分属性。一般而言,希望随着划分不断进行,决策树的分支节点所包含的样本尽可能属于同一类别,即结点的纯度越来越高。可以用信息增益、增益率、基尼指数等指标来选择最优划分属性。 4.2.1 信息增益“信息熵”(
2017-07-18 17:03:37 500
原创 《机器学习》读书笔记3
第三章 线性模型线性模型主要用于回归,也可用于分类。 3.1 基本形式线性模型(linear model)试图学得一个属性的线性组合来进行预测的函数,即f(x)=w1x1+w2x2+。。。+wdxd+b用向量形式写成其中w={w1; w2; …; wd}。 线性模型主要用于回归任务,具有很好的可解释性,而且可通过层级结构和高维映射作为非线性模型的基础
2017-07-12 16:36:10 617 1
原创 《机器学习》读书笔记2
第二章 模型评估与选择2.1 经验误差与过拟合经验误差(empirical error):指学习器在训练集上的误差期望。泛化误差(generalization error):学习器在新样本上的误差期望。机器学习的目标是得到泛化误差小的学习器,然而很难,退而求其次,希望得到经验误差小的学习器,但是即使经验误差小,也不必然意味着泛化误差低,特别是如果学习器存在过拟合,则学习器的
2017-07-02 23:04:50 385
原创 《机器学习》读书笔记1
周志华《机器学习》,开学!第一章 绪论1.1 引言机器学习(ML)所研究的主要内容:是关于在计算机上从数据中产生“模型”(model)的算法,即“学习算法”(learning algorithm)。 1.2 基本术语数据集(data set)=示例(instance)/样本(sample)的集合,一个instance/sample具有多种“属性”(attribute
2017-07-01 10:23:08 733
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人