o(1), o(n), o(logn), o(nlogn)
描述算法复杂度时,常用o(1), o(n), o(logn), o(nlogn)表示对应算法的时间复杂度,是算法的时空复杂度的表示。不仅仅用于表示时间复杂度,也用于表示空间复杂度。
O后面的括号中有一个函数,指明某个算法的耗时/耗空间与数据增长量之间的关系。其中的n代表输入数据的量。
比如时间复杂度为O(n),就代表数据量增大几倍,耗时也增大几倍。比如常见的遍历算法。再比如时间复杂度O(n^2),就代表数据量增大n倍时,耗时增大n的平方倍,这是比线性更高的时间复杂度。比如冒泡排序,就是典...
转载
2021-03-15 20:48:19 ·
226 阅读 ·
0 评论