Datawhale AI夏令营-CV图像方向-Task1+2

写在前面

Inclusion・The Global Multimedia Deepfake Detection | Kaggle   比赛链接

baseline提交并获取得分,但是具体知识点还没完全掌握,所以后续深入代码后再行补充

内容涉及
  • 深入探讨Deepfake技术的原理、应用案例以及检测方法。通过实践项目和案例研究体验Deepfake技术的制作过程,并学习如何辨别Deepfake内容。
  • 知识点涉及:
    • 深度学习概念
    • AIGC 和 Deepfake的关系
    • 深度学习模型原理
    • 构建Deepfake攻防模型
    • 数据集处理与增强

Task 1:了解Deepfake & baseline提交

Deepfake
概念

Deepfake是一种使用人工智能技术生成的伪造媒体,特别是视频和音频,它们看起来或听起来非常真实,但实际上是由计算机生成的。这种技术通常涉及到深度学习算法,特别是生成对抗网络(GANs),它们能够学习真实数据的特征,并生成新的、逼真的数据

识别

如果想要人工识别Deepfake的图片,可以通过以下逻辑步骤进行:

  • 首先,观察图片的细节。仔细检查人物的面部特征,尤其是眼睛和嘴巴,看是否有不自然的眨眼频率或口型与说话内容不同步的现象。

  • 接着,检查光线和阴影。分析图片中的光源是否一致,阴影的方向是否与光源相符,不自然的光线或阴影可能是图片被修改的迹象。

  • 然后,分析像素。放大图片,寻找是否有模糊或像素化的部分,这可能是Deepfake技术留下的瑕疵。

  • 此外,注意背景。检查背景中是否有不协调的元素,比如物体边缘是否平滑,背景中是否有不自然的重复模式。

深度伪造技术

深度伪造技术通常可以分为四个主流研究方向:

  • 面部交换专注于在两个人的图像之间执行身份交换;

  • 面部重演强调转移源运动和姿态;

  • 说话面部生成专注于在角色生成中实现口型与文本内容的自然匹配;

  • 面部属性编辑旨在修改目标图像的特定面部属性;

深度学习与Deepfake

深度学习是一种强大的机器学习技术,它通过模拟人脑处理信息的方式,使计算机能够从大量数据中自动学习和识别模式。深度学习模型,尤其是卷积神经网络(CNN),能够识别图像和视频中的复杂特征。在Deepfake检测中,模型可以学习识别伪造内容中可能存在的微妙异常

机器学习与深度学习

核心思想:通过算法和统计模型,机器学习允许计算机从经验中学习,识别模式,并做出预测或决策。

  • 监督学习:算法从标记的训练数据中学习,这些数据包含了输入和期望的输出。

  • 无监督学习:算法处理未标记的数据,试图找出数据中的结构和模式。

Task2:从baseline入门深度学习

Task 2的代码地址
  • https://www.kaggle.com/code/finlay/deepfake-ffdi-ch2/
Task 2学习手册
参考链接
  • https://www.kaggle.com/discussions/getting-started/429326
  • https://stanford.edu/~shervine/teaching/cs-229/cheatsheet-deep-learning
  • https://ml-cheatsheet.readthedocs.io/en/latest/activation_functions.html
  • https://encord.com/blog/activation-functions-neural-networks/

从机器学习到深度学习

  • 机器学习:通常使用相对简单的算法(如线性回归、决策树)处理数据。需要人工设计特征工程来提高模型性能。
  • 深度学习:通过深层神经网络自动学习特征,能够处理和学习高维度和复杂的数据模式,适用于图像识别、自然语言处理等复杂任务。
  • 机器学习算法通过数据进行训练,识别数据中的模式和规律,并在此基础上进行预测或决策。随着数据量的增加和算法的优化,机器学习模型能够不断改进其性能,使其在特定任务上表现得越来越好。

    • 线性回归:

      • 线性假设:假设输入特征与输出标签之间存在线性关系。

      • 独立同分布(IID):训练集中的数据是独立且同分布的。

    • 决策树:

      • 独立性假设:每个特征在决策过程中是相互独立的。

      • 连续性假设:特征可以是连续的或离散的,算法通过找到最佳分割点来构建树。

    • 神经网络:

      • 非线性假设:通过非线性激活函数来建模数据中的复杂非线性关系。

      • 层次化假设:通过分层结构来学习数据的不同层次和抽象。

学习路线
  • 对于初学者来说,通常建议先学习基础的机器学习知识,再逐步过渡到深度学习。
  • 首先了解什么是机器学习,它的应用领域,以及它的主要类型(监督学习、无监督学习、半监督学习和强化学习)。
  • 然后掌握一些经典的机器学习算法,如线性回归、逻辑回归、决策树、随机森林、SVM(支持向量机)、K-近邻(KNN)等。
  • 接着从基础的神经网络结构开始,理解神经元、层、前向传播和反向传播等概念。
  • 学习如何使用深度学习框架,如TensorFlow或PyTorch,它们提供了构建和训练深度学习模型所需的工具和API。
  • 掌握卷积神经网络(CNN)、循环神经网络(RNN)、长短期记忆网络(LSTM)和Transformer等模型。
注意点
  • 虽然 ChatGPT 是深度学习在自然语言处理领域的典型应用,并且深度学习在许多领域都取得了显著的成就,
  • 但深度学习并不能解决所有问题。
  • 深度学习通常需要大量的数据来训练模型,对于某些领域或问题,获取足够的高质量数据可能是不现实的。

深度学习的训练

梯度下降
  • https://blog.csdn.net/google19890102/article/details/69942970
  • 梯度下降是一种优化算法,用于最小化函数。
  • 梯度下降算法基于这样一个原理:损失函数的梯度指向函数增长最快的方向。
  • 因此,如果我们希望减少损失函数的值,我们就需要沿着梯度的反方向调整模型的参数

Pytorch训练代码

def train(train_loader, model, criterion, optimizer, epoch):

    # switch to train mode
    model.train()

    end = time.time()
    for i, (input, target) in enumerate(train_loader):
        input = input.cuda(non_blocking=True)
        target = target.cuda(non_blocking=True)

        # compute output
        output = model(input)
        loss = criterion(output, target)

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
  • 首先,我们需要准备一批图片数据(通过train_loader)和这些图片对应的正确标签(target)。
  • 在开始训练之前,将模型设置为训练模式( model.train() ),这样模型就知道现在是学习时间了。
  • 接着,开始喂给模型图片数据,并让它尝试预测这些图片的内容。
  • 模型会基于它目前的学习给出预测结果(output),而会计算这些预测结果与实际标签之间的差异,这个差异就是损失(loss)。
  • 为了让模型学会准确预测,需要指出它的错误,并更新它的内部参数来减少这些错误(通过loss.backward()optimizer.step())。
  • 这个过程就像是模型在自我调整,以便在下一次遇到类似图片时能够做出更准确的预测。

  • 3
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值