一元柯西问题解法整理与试证明(傅里叶变换的应用)

关于柯西问题

    柯西问题是指偏微分方程仅有初始条件而无边界条件的定解问题,常用特征线法、分离变量法、格林函数法以及傅里叶变换求解,柯西问题即对于

\begin{cases} U_{t}=a^{2}U_{xx}+f(x,t)\\U(x,0)=\phi (x) \end{cases}

    其中  U_{t}=a^{2}U_{xx}+f(x,t)  为主函数,U(x,0)=\phi (x)  为初始条件,求解U(x,t)


关于傅里叶变换:

  1. 公式:对于一维方程f(x)有  F(f)\Rightarrow g(\lambda )=\int_{-\infty}^{+\infty}f(x)e^{-i\lambda x}dx   或   F^{-}(g)\Rightarrow f(x)=\frac{1}{2\pi }\int_{-\infty}^{+\infty}g(\lambda )e^{i\lambda x}d\lambda
  2. 卷积:若f(x)=\int_{-\infty}^{+\infty}f_{1}(x-t)f_{2}(t)dt,则称f(x)f_{1}f_{2}的卷积,表示为  F(x)=f_{1}\cdot f_{2}
  3. 性质:F(f_{1}\cdot f_{2})=F(f_{1})\cdot F(f_{2})  卷积定理

                   F(f^{'}(x))=i\lambda F(f(x))  微分关系定律

             对于多元函数的傅里叶变换,以上定律均适用,但需考虑复杂性,即

                                           对于f(x_{1},x_{2}...x_{n})

                                           

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值