一元柯西问题解法整理与试证明(傅里叶变换的应用)

关于柯西问题

    柯西问题是指偏微分方程仅有初始条件而无边界条件的定解问题,常用特征线法、分离变量法、格林函数法以及傅里叶变换求解,柯西问题即对于

\begin{cases} U_{t}=a^{2}U_{xx}+f(x,t)\\U(x,0)=\phi (x) \end{cases}

    其中  U_{t}=a^{2}U_{xx}+f(x,t)  为主函数,U(x,0)=\phi (x)  为初始条件,求解U(x,t)


关于傅里叶变换:

  1. 公式:对于一维方程f(x)有  F(f)\Rightarrow g(\lambda )=\int_{-\infty}^{+\infty}f(x)e^{-i\lambda x}dx   或   F^{-}(g)\Rightarrow f(x)=\frac{1}{2\pi }\int_{-\infty}^{+\infty}g(\lambda )e^{i\lambda x}d\lambda
  2. 卷积:若f(x)=\int_{-\infty}^{+\infty}f_{1}(x-t)f_{2}(t)dt,则称f(x)f_{1}f_{2}的卷积,表示为  F(x)=f_{1}\cdot f_{2}
  3. 性质:F(f_{1}\cdot f_{2})=F(f_{1})\cdot F(f_{2})  卷积定理

                   F(f^{'}(x))=i\lambda F(f(x))  微分关系定律

             对于多元函数的傅里叶变换,以上定律均适用,但需考虑复杂性,即

                                           对于f(x_{1},x_{2}...x_{n})

                                           F(w_{1},w_{2}...w_{n})=\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}...\int_{-\infty}^{+\infty}f(x_{1},x_{2}...x_{n})e^{-i(w_{1}x_{1}...w_{n}x_{n})}dx_{1}dx_{2}...dx_{n}


求解知识:

  1. 高斯积分:\int_{-\infty}^{+\infty}e^{-x^{2}}dx=\sqrt[]{\pi }  求解过程中可以视为虚数里i的作用。
  2. 叠加原理:对于  f(x)=f_{1}(t)\pm f_{2}(t)  有  F(w)=F_{1}(w)\pm F_{2}(w)  因此在求解过程中可以当成一个又一个一元函数来做

问题求解:

    可以先将  F[u(x,t)]=\widetilde{u}(\lambda ,t)

                    F[\phi (x)]=\widetilde{\phi }(\lambda )        这样来表示

  由叠加原理,我们分别对柯西问题主函数与初始条件分开求解

    对主函数左右两边分别进行傅里叶变换(对x)

                                                   U_{t}=\frac{dU(x,t)}{dt}\Rightarrow [\widetilde{u}(\lambda ,t)]_{t}=\frac{d\widetilde{u}}{dt}  左

                                                                          aU_{xx}\Rightarrow -\lambda ^{2}a^{2}\widetilde{u}  右

    试推导(可能不严谨,有文献与此不同):F[\widetilde{u}(\lambda ,t)_{xx}]=(i\lambda )^{2}F(\widetilde{u})=-\lambda ^{2}F(\widetilde{u})

    对初始条件左右两边进行傅里叶变换(对x)

    易得  \widetilde{u}(\lambda ,0)=\widetilde{\phi }(\lambda )

    故而有\begin{cases} \frac{1}{\widetilde{u}}d\widetilde{u}=-\lambda ^{2}a^{2}dt\\\widetilde{u}(\lambda ,0)=\widetilde{\phi }(\lambda )\end{cases}

    先将方程组中第一个式子进行变形:

  1. 求导得  ln\widetilde{u}=-\lambda ^{2}a^{2}dt\Rightarrow \widetilde{u}=Ce^{-\lambda ^{2}a^{2}t}
  2. 代入  \widetilde{u}(\lambda ,0)=\widetilde{\phi }(\lambda )  当  t=0  时,\widetilde{u}=C\cdot 1=\widetilde{\phi }(\lambda )  即  \widetilde{\phi }(\lambda )=C

    故而有  \widetilde{u}=\widetilde{\phi }(\lambda )e^{-\lambda ^{2}a^{2}t}

    接下来通过此式求解  u(x,t)

    对于  \widetilde{u}=\widetilde{\phi }(\lambda )e^{-\lambda ^{2}a^{2}t}  ,将其分为两个式子:  \widetilde{\phi }(\lambda )  和  e^{-\lambda ^{2}a^{2}t}

    对于后面的  e^{-\lambda ^{2}a^{2}t}  进行逆傅里叶运算,即

                                                                          F^{-}(e^{-\lambda ^{2}a^{2}t})=\frac{1}{2\pi}\int_{-\infty}^{+\infty}e^{-\lambda ^{2}a^{2}t}\cdot e^{i\lambda x}d\lambda

注意,这儿只有一个积分,只有一个自变量,由于是对前文(关于傅里叶变换部分)中  g(\lambda )  的逆傅里叶变换,所以除了自变量  \lambda  其余全都是参量。

    则    F^{-}(e^{-\lambda ^{2}a^{2}t})=\frac{1}{2\pi}\int_{-\infty}^{+\infty}e^{-\lambda ^{2}a^{2}t}\cdot e^{i\lambda x}d\lambda

                                   =\frac{1}{2\pi}\int_{-\infty}^{+\infty}e^{-a^{2}t(\lambda ^{2}-\frac{i\lambda x}{a^{2}t})}d\lambda

                                   =\frac{1}{2\pi}\int_{-\infty}^{+\infty}e^{-a^{2}t(\lambda -\frac{ix}{2a^{2}t})^{2}}\cdot e^{\frac{x^{2}}{4a^{4}t^{2}}} d\lambda

                                   =\frac{1}{2\pi}e^{\frac{x^{2}}{4a^{4}t^{2}}}\int_{-\infty}^{+\infty}e^{-a^{2}t(\lambda -\frac{ix}{2a^{2}t})^{2}}d\lambda

    式中的  e^{\frac{x^{2}}{4a^{4}t^{2}}}  相对积分变量为常数,故可提到积分外

    接下来对中间部分进行处理:  \int_{-\infty}^{+\infty}e^{-a^{2}t(\lambda -\frac{ix}{2a^{2}t})^{2}}d\lambda  

                                                =\int_{-\infty}^{+\infty}e^{-a^{2}t(\lambda -\frac{ix}{2a^{2}t})^{2}}d(\lambda -\frac{ix}{2a^{2}t} )

                          令  \lambda -\frac{ix}{2a^{2}t}=\lambda _{1}

                          则                  =\int_{-\infty}^{+\infty}e^{-a^{2}t\lambda _{1}^{2}}d\lambda _{1}  通过高斯积分  \int_{-\infty}^{+\infty}e^{-x^{2}}dx=\sqrt[]{\pi }  进行计算

                                                =\frac{1}{a\sqrt[]{t}}\int_{-\infty}^{+\infty}e^{-(a\sqrt[]{t}\lambda )^{2}}d(a\sqrt[]{t}\lambda )

                                                =\frac{\sqrt{\pi }}{a\sqrt{t}}

    将此结果代入  \frac{1}{2\pi}e^{\frac{x^{2}}{4a^{4}t^{2}}}\int_{-\infty}^{+\infty}e^{-a^{2}t(\lambda -\frac{ix}{2a^{2}t})^{2}}d\lambda  得

                                                                                          F^{-}(e^{-\lambda ^{2}a^{2}t})=\frac{1}{2\pi}\frac{\sqrt{\pi }}{a\sqrt{t}}e^{-\frac{x^{2}}{4a^{4}t^{2}}}

    则  u=\widetilde{\phi }(\lambda )\cdot\frac{1}{2\pi}\frac{\sqrt{\pi }}{a\sqrt{t}}e^{-\frac{x^{2}}{4a^{4}t^{2}}} =\frac{1}{2\sqrt{\pi }}\frac{1}{a\sqrt{t}}\int_{-\infty}^{+\infty}\phi (\xi )e^{\frac{-(x-\xi )^{2}}{4a^{4}t^{2}}}d\xi

  • 17
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值