一、问题背景:矩阵的输入维度 vs 输出维度
例如以下情况:
A∈R3×2,x∈R2,y=Ax∈R3.A \in \mathbb{R}^{3\times2}, \quad x \in \mathbb{R}^2, \quad y = A x \in \mathbb{R}^3.A∈R3×2,x∈R2,y=Ax∈R3.
也就是说:
- 输入是二维空间(一个平面上的点);
- 输出是在三维空间里;
- 矩阵 (A)(A)(A) 把输入平面映射成三维空间中的某个几何形状。
问题是:这个形状能不能“充满整个三维空间”?
二、线性变换的秩(rank)是关键
矩阵的秩 rank(A) 告诉我们,它能“铺开”输出空间的多少维度。
- rank(A) ≤ min(3, 2) = 2。
- 所以这个变换的最大可能秩是 2。
这意味着:
矩阵 (A)(A)(A) 最多只能把二维输入映射到一个二维子空间(一个平面)中,无法覆盖整个三维空间。
三、几何直觉:平面永远不会变成立体
想象输入空间是一块平面橡皮布(二维的)。
矩阵 (A)(A)(A) 做的事可以看作:
- 拉伸它;
- 旋转它;
- 甚至在三维空间中倾斜它。
可无论你怎么拉、怎么扭,这块橡皮布的本质仍是二维的。
你可以让它漂浮在三维空间的任意角度,但它永远没有“厚度”,
所以无法填满整个三维空间。
四、数学上:输出的张成空间(Column Space)
矩阵 (A=[a1 a2])(A = [a_1\ a_2])(A=[a1 a2]) 的列向量 (a1,a2∈R3)(a_1, a_2 \in \mathbb{R}^3)(a1,a2∈R3)
决定了输出空间能到达的范围:
Range(A)=Ax:x∈R2=spana1,a2. \text{Range}(A) = { A x : x \in \mathbb{R}^2 } = \text{span}{ a_1, a_2 }. Range(A)=Ax:x∈R2=spana1,a2.
即所有输出都是这两个列向量的线性组合。
- 如果 (a1,a2)(a_1, a_2)(a1,a2) 不共线(线性无关),输出张成的是一个平面;
- 如果 (a1,a2)(a_1, a_2)(a1,a2) 共线(线性相关),输出退化成一条直线;
- 绝不可能是整个 (R3)(\mathbb{R}^3)(R3)。
五、举个具体的例子
取
A=[10 01 11]
A =
\begin{bmatrix}
1 & 0 \
0 & 1 \
1 & 1
\end{bmatrix}
A=[10 01 11]
对任意输入 (x=[x1,x2]⊤)(x = [x_1, x_2]^\top)(x=[x1,x2]⊤),输出是:
Ax=[x1 x2 x1+x2]. A x = \begin{bmatrix} x_1\ x_2\ x_1 + x_2 \end{bmatrix}. Ax=[x1 x2 x1+x2].
所有可能的输出点 ((x_1, x_2, x_1+x_2))
都在三维空间中满足:
z=x+y.
z = x + y.
z=x+y.
这是一张平面方程。
也就是说——输入平面被映射成三维空间中的一个倾斜平面。
它确实“进入了三维空间”,但永远无法填满整个体积。
六、与奇异值分解的联系
SVD 里提到的左奇异向量 (u1,u2)(u_1, u_2)(u1,u2) 正好描述了这个平面在三维空间里的主方向。
它们构成输出空间的正交基,而矩阵的秩告诉我们有多少个这样的方向。
对于 (3×2)(3\times 2)(3×2) 的矩阵:
- 可能有两个非零奇异值;
- 于是有两个左奇异向量 (u1,u2)(u_1, u_2)(u1,u2);
- 它们张成一个二维子空间——那正是这个矩阵的“输出平面”。
七、小结一句话
矩阵 (A:R2→R3)(A:\mathbb{R}^2 \to \mathbb{R}^3)(A:R2→R3) 的输出永远被限制在一个二维子空间中。
它能让输入平面在三维空间里“倾斜、旋转、拉伸”,
但不能凭空长出第三个维度去填满整个体积。
14万+

被折叠的 条评论
为什么被折叠?



