自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(398)
  • 资源 (4)
  • 收藏
  • 关注

原创 JS string replace高级用法详解

字符串模式可用正则模式可用强烈推荐回调函数长词优先使用转义$1…$n推荐仅用于简单调试回调收集数据,replace 仅返回字符串零宽断言慎用大文本用回调 + 长词优先策略。

2026-01-16 08:58:33 688

原创 CBOW输入层向量形式深入解析

词 ID;⟺;one-hot 索引;⟺;embedding 查表\text{词 ID};\text{one-hot 索引};\text{embedding 查表}词ID;⟺;one-hot索引;⟺;embedding查表它们描述的是同一件事情的不同视角。理论层面:输入层使用 one-hot 向量,便于数学建模与推导工程层面:输入层使用词 ID,通过 Embedding 层完成查表计算层面:真正参与上下文建模的是低维、稠密、可训练的 embedding 向量。

2026-01-16 08:57:09 724

原创 CBOW(Continuous Bag of Words)模型输入层详解

利用上下文词(context words)来预测中心词(target word)。与 Skip-gram 模型“由中心词预测上下文词”不同,CBOW 模型将多个上下文词的信息进行汇聚,形成一个整体表示,再用于预测中心词。在 CBOW 模型中,输入层的设计直接决定了上下文信息如何被表示与融合,因此对输入层的理解是掌握该模型的关键。设训练语料中共有∣V∣( |V| )∣V∣Vw1w2w∣V∣Vw1​w2​w∣V∣​词表大小∣V∣( |V| )∣。

2026-01-13 08:36:43 718

原创 深入讲解 C# 中 string 如何支持 CultureInfo

string 本身不带文化信息,只是 Unicode 字符序列。CultureInfo 影响Ordinal 系列操作不受文化影响,适合跨系统、跨文化的存储或比较。提供跨文化一致规则。底层依赖 CompareInfo(ICU 或 Windows NLS)实现文化敏感逻辑。

2026-01-13 08:30:39 377

原创 C#中实现类的值相等时需要保留null==null为true的语义

结论明确且唯一:是的。在 C# 中,无论一个类是否实现了值相等,都必须保留为true。该行为并非实现细节或推荐实践,而是C# 语言与 .NET 框架对“相等”语义的基础性约束。任何破坏这一约束的实现,都会导致类型行为违反规范并引发严重问题。在 C# 中,当实现类的值相等时,开发者仅被允许定义两个“非 null 实例”在何种条件下被视为相等// 定义非 null 实例之间的值相等逻辑。

2026-01-12 08:40:07 903

原创 CBOW(Continuous Bag of Words)模型详解

w1w2wTw1​w2​wT​给定位置t( t )t处的中心词wt( w_t )wt​,定义窗口大小为m( m )mcontextwtwt−mwt−1wt1wtmcontextwt​wt−m​wt−1​wt1​wtm​Pwt∣wt−mwtmPwt​∣wt−m​wtm​。

2026-01-12 08:38:20 777

原创 C# 中如何实现值相等(Value Equality)

只实现,不重写重写Equals,但忘记==与Equals语义不一致在中使用可变字段在==中直接调用。

2026-01-10 09:22:18 880

原创 C# 中对象相等性判断的全面解析

objB);obj);该方法定义在中,可被重写。objB);C# 中的“相等”是一个多层次、多语义的问题。理解这四种方式的差异,不仅能避免隐藏 bug,还能写出更健壮、可维护的代码。

2026-01-10 09:21:33 468

原创 TaskFactory

是 C# 中处理多线程和异步任务的一个非常有用的类,它通过简化任务的创建、启动、调度和管理,极大提高了开发效率和代码可读性。通常,这些任务不应使用线程池线程来执行,而应该单独分配线程,以避免阻塞线程池中的其他任务。你可以指定某个任务成功完成后执行另一个任务,或者在任务失败时执行相应的操作。例如,你可以让任务只在当前任务成功完成时执行后续任务,或者只在任务失败时执行后续任务。允许你创建任务的链式操作,也就是一个任务完成后可以自动执行另一个任务。的创建过程,使得任务的启动、调度和继续等操作变得更加方便和灵活。

2025-12-26 08:04:50 879

原创 TaskScheduler

/ 将任务排队到特定线程// 强制任务在该线程内执行// 在这个线程内执行任务在这个例子中,将任务调度到特定的线程(在方法中运行的线程)。这个调度器可以用来确保任务都在一个线程上顺序执行。在某些高性能计算场景下,可能需要一个特定的线程池来执行任务,而不是使用默认的线程池。自定义允许开发者为任务调度提供更细粒度的控制。

2025-12-26 08:04:08 1469

原创 TaskCompletionSource

是一个非常强大的工具,允许开发者以更加灵活的方式控制和管理异步任务。它让你能够将基于回调的异步编程模型转化为更加直观和易于管理的Task模型,同时还提供了手动控制任务状态(完成、失败或取消)的能力。在处理复杂异步控制流时,是非常有用的。

2025-12-25 07:58:55 388

原创 EventWaitHandle

是 .NET 中一个用于线程同步的基类,位于命名空间下。它提供了一种机制,用于一个或多个线程等待某个特定事件的发生,通常用于多线程同步和线程间的通信。类本身是一个抽象类,不能直接实例化,但它有两个常见的子类——和,这两个子类广泛用于线程同步操作。是一种线程同步机制,它使得线程能够根据特定事件的状态(信号或非信号)来决定是否继续执行。通常,线程在执行过程中会检查事件的状态,若事件处于非信号状态,线程会被挂起直到事件状态变为信号状态。

2025-12-25 07:58:19 664

原创 ThreadPool

是一个线程集合,它用于管理应用程序中的多个线程,并且能够根据任务需要动态地分配线程。线程池中的线程是重用的,这意味着线程不会在任务完成后销毁,而是返回池中,等待下一个任务。:虽然线程池可以动态调整线程数量,但仍然受到最大线程数的限制。如果任务量过大,线程池可能无法及时响应。:线程池中的线程选择任务时,通常会选择队列中排在最前面的任务,即采用先到先服务(FIFO)的原则。这是最常用的方法之一,用于将一个任务提交到线程池队列中,由空闲线程来执行该任务。设置线程池中的线程优先级,可以控制线程池线程的执行优先级。

2025-12-24 08:02:01 393

原创 Task.WhenAll和Task.WhenAny

❌ 把 WhenAll 当“并行器”❌ 在循环里直接 await(伪并发)❌ WhenAny 后忽略未完成 Task❌ 忽略异常和取消是一个原子计数器驱动的完成门闩是一个 CAS 驱动的竞速门闩它们本身几乎“没有重量”,但决定了整个 async 架构的形状。

2025-12-24 08:01:01 321

原创 Task.Wait()、Task.Result、Task.GetAwaiter().GetResult()

→ 阻塞等待,无返回值,异常 AggregateException→ 阻塞等待,返回结果,异常 AggregateException→ 阻塞等待,返回结果或抛原始异常,内部 await/框架常用都不触发 continuation,阻塞线程可能导致死锁才是非阻塞、自动调度 continuation 的机制。

2025-12-22 08:19:11 859

原创 Task和TaskAwaitor功能分析

TaskAwaiter 是结构体。桥梁:连接 Task 与 async/await 状态机。注册 continuation:决定 Task 未完成时如何挂起状态机。获取结果:Task 已完成时,通过返回值或抛出异常。TaskAwaiter = Task ↔ AsyncStateMachine 的桥梁。Task = 异步操作状态 + 结果 + continuation 容器。TaskAwaiter = Task ↔ async 状态机桥梁。Task 完成后 continuation 的执行。

2025-12-22 08:17:51 623

原创 Task.Wait()、Task.Result、Task.GetAwaiter().GetResult()

→ 阻塞等待,无返回值,异常 AggregateException→ 阻塞等待,返回结果,异常 AggregateException→ 阻塞等待,返回结果或抛原始异常,内部 await/框架常用都不触发 continuation,阻塞线程可能导致死锁才是非阻塞、自动调度 continuation 的机制。

2025-12-20 07:36:14 964

原创 Task和TaskAwaitor功能分析

TaskAwaiter 是结构体。桥梁:连接 Task 与 async/await 状态机。注册 continuation:决定 Task 未完成时如何挂起状态机。获取结果:Task 已完成时,通过返回值或抛出异常。TaskAwaiter = Task ↔ AsyncStateMachine 的桥梁。Task = 异步操作状态 + 结果 + continuation 容器。TaskAwaiter = Task ↔ async 状态机桥梁。Task 完成后 continuation 的执行。

2025-12-20 07:35:33 913

原创 await中的SynchronizationContext和ExecutionContext

“在哪里执行= “逻辑上下文流动捕获 SynchronizationContext(unless ConfigureAwait(false))捕获 ExecutionContextThreadPool / IOCP / timer 执行 continuation恢复 ExecutionContextPost 到 SynchronizationContext(如果存在)理解这两者,是深入分析 .NET async 线程切换、延迟和潜在死锁的关键。

2025-12-19 08:20:37 886

原创 async和await的实现机制分析

编译器状态机 + Task continuation + ThreadPool / Context 调度它把“阻塞等待”变成了“未来某时恢复执行”

2025-12-19 08:19:23 818

原创 神经网络之经验风险最小化

概念定义优缺点经验风险最小化 (ERM)在训练集上最小化平均损失简单易行,但易过拟合结构风险最小化 (SRM)在 ERM 基础上加入正则项抑制过拟合,更具泛化能力。

2025-11-24 08:43:02 107

原创 神经网络之向量空间的正交坐标系的数量

在一个nnn维向量空间中,有无数个正交坐标系;它们之间通过正交矩阵连接,形成了一个连续的旋转宇宙。如果你固定空间的几何结构,旋转相机永远拍不完的角度,就是这些无穷多的正交基。要不要我给你展示一下二维空间中所有正交基的“连续变化动画”原理?可以看到VVV如何在单位圆上滑动,把基向量旋转成一整圈。

2025-11-07 08:24:16 443 1

原创 神经网络之矩阵可以让二维向量填充整个三维空间吗

最多只能把二维输入映射到一个二维子空间(一个平面)中,无法覆盖整个三维空间。它们构成输出空间的正交基,而矩阵的秩告诉我们有多少个这样的方向。所有可能的输出点 ((x_1, x_2, x_1+x_2))你可以让它漂浮在三维空间的任意角度,但它永远没有“厚度”,它确实“进入了三维空间”,但永远无法填满整个体积。它能让输入平面在三维空间里“倾斜、旋转、拉伸”,告诉我们,它能“铺开”输出空间的多少维度。想象输入空间是一块平面橡皮布(二维的)。的输出永远被限制在一个二维子空间中。正好描述了这个平面在三维空间里的。

2025-11-07 08:20:42 772

原创 神经网络之特征分解

当矩阵可被特征分解时,所有的线性组合都可以通过特征向量方向上的伸缩表示,从而把矩阵的作用“分解”成若干独立方向上的缩放。这意味着,线性变换 (A) 对向量 (v) 的作用仅仅是。是正交矩阵(列向量是单位正交的特征向量)。,不会改变方向(方向可能翻转,如果。的一个特征向量,对应特征值。得到对应的非零向量 (v)。个线性无关的特征向量。

2025-11-06 05:41:54 939

原创 神经网络之奇异值分解

对于任意实矩阵A∈Rm×nA∈Rm×nAUΣVTAUΣVTU∈Rm×mU∈Rm×m:左奇异向量矩阵(列正交);V∈Rn×nV∈Rn×n:右奇异向量矩阵(列正交);Σ∈Rm×nΣ∈Rm×n:对角矩阵,对角线非负,元素为奇异值。

2025-11-06 05:38:24 862

原创 神经网络之正交对角化

正交对角化(Orthogonal Diagonalization)指:对一个实对称矩阵A∈Rn×nA∈Rn×n,存在一个正交矩阵Q(Q)Q和一个对角矩阵Λ(\Lambda)ΛAQΛQ⊤AQΛQ⊤Q⊤QIQ⊤QI,列向量是单位向量且两两正交Λ(\Lambda)Λ是对角矩阵:对角线元素是 (A) 的特征值正交对角化把矩阵分解为旋转 + 拉伸 + 旋转的组合定义:实对称矩阵AQΛQ⊤AQΛQ⊤条件。

2025-11-05 09:05:30 1145

原创 神经网络之特征值与特征向量

给定一个方阵A∈Rn×nA∈Rn×n,如果存在一个非零向量v≠0(v \neq 0)v0和一个标量λ(\lambda)λ,满足AvλvAvλvv(v)v称为矩阵A(A)A的特征向量λ(\lambda)λ称为矩阵A(A)A的特征值直观理解特征向量是经过矩阵变换A(A)A后,只被拉伸或缩放,而不改变方向的向量。特征值就是这个拉伸/缩放的倍数。

2025-11-05 09:02:21 1055

原创 神经网络之线性变换

设有一个从向量空间到向量空间的映射TRn→RmTRn→Rm当且仅当它满足以下两个条件时,称 (T) 为线性变换TxyTxTyTcxcTx∀c∈RTxyTxTyTcxcTx∀c∈R​也就是说:线性变换保持加法和数乘结构,它不会破坏向量之间的线性关系。类型线性几何效果矩阵形式特征缩放✅放大/缩小diagkkdiag(k,k)diagkk改变长度,保持方向旋转✅。

2025-11-04 08:36:54 941

原创 神经网络之反射变换

反射变换(reflection transformation)是一种线性变换,它将空间中的点(或向量)相对于某个**平面(或直线)**进行镜像对称。在二维空间中,它表示相对于一条直线的镜像反射;在三维空间中,它表示相对于一个平面的镜像反射。n( n )n是单位法向量(表示反射平面的法线方向);x∈Rnx∈Rn是任意向量。则反射变换T( T )TTxx−2n⋅xnTxx−2n⋅xn项目内容定义Txx−2n⋅xnT。

2025-11-04 08:32:35 1068

原创 神经网络之正交矩阵

核心特征:转置等于逆矩阵Q−1Q⊤Q−1Q⊤;几何意义:保持长度和角度;行列式:+1 表示旋转,−1 表示反射;列向量:单位正交;常见正交矩阵:旋转矩阵、反射矩阵、置换矩阵、单位矩阵等。

2025-11-03 07:20:01 1401

原创 神经网络之向量降维

我们进行向量降维,是为了去冗余、降噪声、提取主要语义模式。而之所以能保留语义结构,是因为降维方法抓住了数据中方差最大、最稳定的变化方向这些方向恰好对应于语言的主要语义规律。

2025-11-03 07:17:14 468

原创 神经网络之协方差

协方差(Covariance)衡量。对随机变量X和YcovXYE[(X−EX])⋅Y−EY])]对样本数据((X1​Y1​Xn​Yn​))covXYn−11​i1∑n​Xi​−XˉYi​−Yˉ⚡ 核心思想:测量两个变量“共同偏离均值的程度”。

2025-10-31 09:06:01 800

原创 神经网络之矩阵可逆

对于一个n×nn×n方阵A(A)A,如果存在同样大小的矩阵B(B)BABBAInABBAIn​其中In(I_n)In​A(A)A可逆InvertibleNonsingularInvertibleNonsingularBA−1BA−1为A(A)A的逆矩阵简单理解:可逆矩阵就是“可以被反转”的矩阵,类似于数的倒数。

2025-10-31 09:03:07 1082

原创 HarmonyOS之UIAbility 备份恢复

UIAbility 的备份恢复机制用于保障。,提升用户体验的连续性。

2025-10-30 08:19:16 783

原创 神经网络之线性相关

设有两个向量(或变量)xx1x2xnyy1y2ynxx1​x2​xn​yy1​y2​yn​如果存在常数ab( a, b )ab,其中b≠0b0xabyxaby那么我们称x 与 y 线性相关(linearly dependent)。若不存在这样的关系,则称它们线性无关(linearly independent)。更一般地,对多个向量v1v2vkv1​v2​vk​。

2025-10-30 08:18:00 1046

原创 神经网络之从向量空间角度理解PPMI矩阵

层面共现矩阵PPMI矩阵向量含义共现次数语义关联强度空间结构频率主导,模糊语义主导,分簇几何表现向量方向杂乱,距离不代表语义向量方向反映语义类别功能词作用拉拢所有词,掩盖语义被压缩到原点整体效果“统计空间”“语义空间”PPMI 把“共现统计的云团”几何地重新拉伸,使向量间的空间距离更接近语义距离。

2025-10-29 08:47:03 1216

原创 神经网络之PPMI矩阵

PMI 衡量两个事件(这里是两个词)之间的关联程度PMIwiwjlog⁡PwiwjPwiPwjPMIwi​wj​logPwi​Pwj​Pwi​wj​​如果两个词独立出现,则PwiwjPwiPwjPwi​wj​Pwi​Pwj​)),PMI = 0如果它们比独立出现更频繁地一起出现→ PMI > 0如果它们几乎从不一起出现 → PMI < 0项目共现矩阵。

2025-10-29 08:45:36 707

原创 神经网络之向量相似性

当我们用向量来表示词语、句子或图像时,向量之间的几何关系就代表了它们之间的语义关系。所以,“相似度”就是在数学上量化“语义相似”的方式。我们主要用几种度量来比较两个向量 (a⃗)( \vec{a} )(a) 和 (b⃗)( \vec{b} )(b):定义:KaTeX parse error: Expected 'EOF', got '_' at position 14: \text{cosine_̲similarity} = \…其中:⋅b):内积(点积)(∣∣a⃗∣∣)( ||\vec{a}|| )

2025-10-28 08:43:57 818

原创 神经网络之共现矩阵

概念内容目的把词变成数字向量,用于表达语义相似性依据分布式假设:“词的意义由上下文决定”矩阵含义行列都是词,数值是共现次数向量化方式每一行即一个词向量语义关系来源相似上下文 → 向量相似实现关键点设窗口 → 遍历语料 → 统计共现次数✅共现矩阵就是:“记录每个词与其他词在相邻上下文中共同出现次数的表格”,每一行可视为一个“语义向量”,语义相似的词 → 向量相似。

2025-10-28 08:39:35 498

原创 神经网络之窗口大小对词语义向量的影响

在基于上下文学习的模型(例如 Word2Vec 的 Skip-gram 或 CBOW)中,窗口大小(通常记为w)定义为模型在学习目标词(target word)时所考虑的上下文词的范围。例如,假设句子是:“猫 坐 在 垫子 上”当窗口大小 = 2 时,目标词 “在” 的上下文词是 “猫”, “坐”, “垫子”, “上”。即考虑“前两个词”和“后两个词”。维度小窗口大窗口语义类型句法、搭配概念、主题表示倾向精细、局部抽象、全局共现范围邻近词语义场向量关系功能相似。

2025-10-27 08:24:50 798

童继龙的ERP顾问感悟.pdf

做ERP顾问已经有些时间了,自己感觉到ERP顾问的成长是需要时间及感悟的。ERP顾问的历程一路走来,感悟颇多,陆续写了十几篇顾问成长的内容,现在把这些内容整理出来,与朋友们分享。 目录: 一、 ERP顾问成长感悟 3 1. “怀才不遇”与“怀才不孕”怎么办? 3 2. 从王永庆的“一粒米”看顾问能力修炼 5 3. 当你是虾米时要长骨格 6 4. 顾问过度包装后未来会吃亏 7 5. 不擅表达也是怀才不遇的一个重要原因 9 6. 其貌不扬就不能做顾问? 12 7. 顾问要像刺客般“一击而中”? 14 8. 你能让你的客户“亢奋”起来吗? 15 9. 你是知识型顾问还是知道型顾问? 16 10. 客户永远是顾问最好的老师 18 11. 成为顾问的方法--“三多”加“六多” 20 12. 顾问的知识需要“畅享” 23 二、 七嘴八舌说ERP顾问 24 1. ERP咨询顾问的资历要多深? 24 2. ERP顾问值这个价吗?ERP顾问是怎么死的? 25 3. 做ERP顾问就只能抛妻弃子? 27 4. ERP售前人员的红布与黑饵 28 5. 网友观点:IT售前6式 31 6. IT售前应该小心的几类客户 33

2010-04-03

ext 手册234324

ext 手册42342额外日日日日日日日日日日日日日日日日日日日日日日日日日

2010-03-19

ES2015规范

2016-05-02

C 信息管理系统(文件操作)

C语言做的实现信息的添删改查,实现了文件的大部分操作!

2008-12-25

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除