一维:
输入一个长度为 nn 的整数序列。
接下来再输入 mm 个询问,每个询问输入一对 l,rl,r。
对于每个询问,输出原序列中从第 ll 个数到第 rr 个数的和。
输入格式
第一行包含两个整数 nn 和 mm。
第二行包含 nn 个整数,表示整数数列。
接下来 mm 行,每行包含两个整数 ll 和 rr,表示一个询问的区间范围。
输出格式
共 mm 行,每行输出一个询问的结果。
数据范围
1≤l≤r≤n1≤l≤r≤n,
1≤n,m≤1000001≤n,m≤100000,
−1000≤数列中元素的值≤1000−1000≤数列中元素的值≤1000
输入样例:
5 3
2 1 3 6 4
1 2
1 3
2 4
输出样例:
3
6
10
解:
#include<iostream>
using namespace std;
const int N=100010;
int q[N],num[N];
int main(){
int n,m;
cin>>n>>m;
for(int i=1;i<=n;i++){
cin>>q[i];
num[i]=num[i-1]+q[i];
}
while(m--){
int l,r;
cin>>l>>r;
cout<<num[r]-num[l-1]<<endl;
}
return 0;
}
Acwing:795
二维
输入一个 nn 行 mm 列的整数矩阵,再输入 qq 个询问,每个询问包含四个整数 x1,y1,x2,y2x1,y1,x2,y2,表示一个子矩阵的左上角坐标和右下角坐标。
对于每个询问输出子矩阵中所有数的和。
输入格式
第一行包含三个整数 n,m,qn,m,q。
接下来 nn 行,每行包含 mm 个整数,表示整数矩阵。
接下来 qq 行,每行包含四个整数 x1,y1,x2,y2x1,y1,x2,y2,表示一组询问。
输出格式
共 qq 行,每行输出一个询问的结果。
数据范围
1≤n,m≤10001≤n,m≤1000,
1≤q≤2000001≤q≤200000,
1≤x1≤x2≤n1≤x1≤x2≤n,
1≤y1≤y2≤m1≤y1≤y2≤m,
−1000≤矩阵内元素的值≤1000−1000≤矩阵内元素的值≤1000
输入样例:
3 4 3
1 7 2 4
3 6 2 8
2 1 2 3
1 1 2 2
2 1 3 4
1 3 3 4
输出样例:
17
27
21
解:
#include<iostream>
using namespace std;
const int N=1010;
int q[N][N],num[N][N];
int main(){
int n,m,w;
cin>>n>>m>>w;
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
cin>>q[i][j];
num[i][j]=num[i-1][j]+num[i][j-1]-num[i-1][j-1]+q[i][j];
}
}
while(w--){
int x1,y1,x2,y2;
cin>>x1>>y1>>x2>>y2;
cout<<num[x2][y2]-num[x2][y1-1]-num[x1-1][y2]+num[x1-1][y1-1]<<endl;
}
return 0;
}