在开发C++程序时,一般在吞吐量、并发、实时性上有较高的要求。设计C++程序时,总结起来可以从如下几点提高效率:
- l 并发
- l 异步
- l 缓存
下面将我平常工作中遇到一些问题例举一二,其设计思想无非以上三点。
1任务队列
1.1 以生产者-消费者模型设计任务队列
生产者-消费者模型是人们非常熟悉的模型,比如在某个服务器程序中,当User数据被逻辑模块修改后,就产生一个更新数据库的任务(produce),投递给IO模块任务队列,IO模块从任务队列中取出任务执行sql操作(consume)。
设计通用的任务队列,示例代码如下:
详细实现可参见:
http://ffown.googlecode.com/svn/trunk/fflib/include/detail/task_queue_impl.h
void
task_queue_t::produce(
const
task_t& task_) {
lock_guard_t lock(m_mutex);
if
(m_tasklist->empty()){
//! 条件满足唤醒等待线程
m_cond.
signal
();
}
m_tasklist->push_back(task_);
}
int
task_queue_t::comsume(task_t& task_){
lock_guard_t lock(m_mutex);
while
(m_tasklist->empty())
//! 当没有作业时,就等待直到条件满足被唤醒{
if
(
false
== m_flag){
return
-1;
}
m_cond.wait();
}
task_ = m_tasklist->front();
m_tasklist->pop_front();
return
0;
}
|
1.2 任务队列使用技巧
1.2.1 IO 与 逻辑分离
比如网络游戏服务器程序中,网络模块收到消息包,投递给逻辑层后立即返回,继续接受下一个消息包。逻辑线程在一个没有io操作的环境下运行,以保障实时性。示例:
void
handle_xx_msg(
long
uid,
const
xx_msg_t& msg){
logic_task_queue->post(boost::bind(&servie_t::proces, uid, msg));
}
|
注意,此模式下为单任务队列,每个任务队列单线程。
1.2.2 并行流水线
上面的只是完成了io 和 cpu运算的并行,而cpu中逻辑操作是串行的。在某些场合,cpu逻辑运算部分也可实现并行,如游戏中用户A种菜和B种菜两种操作是完全可以并行的,因为两个操作没有共享数据。最简单的方式是A、B相关的操作被分配到不同的任务队列中。示例如下:
void
handle_xx_msg(
long
uid,
const
xx_msg_t& msg) {
logic_task_queue_array[uid %
sizeof
(logic_task_queue_array)]->post(
boost::bind(&servie_t::proces, uid, msg));
}
|
注意,此模式下为多任务队列,每个任务队列单线程。
1.2.3 连接池与异步回调
比如逻辑Service模块需要数据库模块异步载入用户数据,并做后续处理计算。而数据库模块拥有一个固定连接数的连接池,当执行SQL的任务到来时,选择一个空闲的连接,执行SQL,并把SQL 通过回调函数传递给逻辑层。其步骤如下:
- n 预先分配好线程池,每个线程创建一个连接到数据库的连接
- n 为数据库模块创建一个任务队列,所有线程都是这个任务队列的消费者
- n 逻辑层想数据库模块投递sql执行任务,同时传递一个回调函数来接受sql执行结果
示例如下:
void
db_t:load(
long
uid_, boost::function<
void
(user_data_t&) func_){
//! sql execute, construct user_data_t user
func_(user)
}
void
process_user_data_loaded(user_data_t&){
//! todo something
}
db_task_queue->post(boost::bind(&db_t:load, uid, func));
|
注意,此模式下为单任务队列,每个任务队列多线程。
2. 日志
本文主要讲C++多线程编程,日志系统不是为了提高程序效率,但是在程序调试、运行期排错上,日志是无可替代的工具,相信开发后台程序的朋友都会使用日志。常见的日志使用方式有如下几种:
- n 流式,如logstream << "start servie time[%d]" << time(0) << " app name[%s]" << app_string.c_str() << endl;
- n Printf 格式如:logtrace(LOG_MODULE, "start servie time[%d] app name[%s]", time(0), app_string.c_str());
二者各有优缺点,流式是线程安全的,printf格式格式化字符串会更直接,但缺点是线程不安全,如果把app_string.c_str() 换成app_string (std::string),编译被通过,但是运行期会crash(如果运气好每次都crash,运气不好偶尔会crash)。我个人钟爱printf风格,可以做如下改进:
- l 增加线程安全,利用C++模板的traits机制,可以实现线程安全。示例:
template
<
typename
ARG1>
void
logtrace(
const
char
* module,
const
char
* fmt, ARG1 arg1){
boost::format s(fmt);
f % arg1;
}
|
这样,除了标准类型+std::string 传入其他类型将编译不能通过。这里只列举了一个参数的例子,可以重载该版本支持更多参数,如果你愿意,可以支持9个参数或更多。
- l 为日志增加颜色,在printf中加入控制字符,可以再屏幕终端上显示颜色,Linux下示例:printf("\033[32;49;1m [DONE] \033[39;49;0m")
更多颜色方案参见:
http://hi.baidu.com/jiemnij/blog/item/d95df8c28ac2815cb219a80e.html
- l 每个线程启动时,都应该用日志打印该线程负责什么功能。这样,程序跑起来的时候通过top –H – p pid 可以得知那个功能使用cpu的多少。实际上,我的每行日志都会打印线程id,此线程id非pthread_id,而其实是线程对应的系统分配的进程id号。
3. 性能监控
尽管已经有很多工具可以分析c++程序运行性能,但是其大部分还是运行在程序debug阶段。我们需要一种手段在debug和release阶段都能监控程序,一方面得知程序瓶颈之所在,一方面尽早发现哪些组件在运行期出现了异常。
通常都是使用gettimeofday 来计算某个函数开销,可以精确到微妙。可以利用C++的确定性析构,非常方便的实现获取函数开销的小工具,示例如下:
struct
profiler{
profiler(
const
char
* func_name){
gettimeofday(&tv, NULL);
}
~profiler(){
struct
timeval tv2;
gettimeofday(&tv2, NULL);
long
cost = (tv.tv_sec - tv.tv_sec) * 1000000 + (tv.tv_usec - tv.tv_usec);
//! post to some manager
}
struct
timeval tv;
};
#define PROFILER() profiler(__FUNCTION__)
|
Cost 应该被投递到性能统计管理器中,该管理器定时讲性能统计数据输出到文件中。
4 Lambda 编程
使用foreach 代替迭代器
很多编程语言已经内建了foreach,但是c++还没有。所以建议自己在需要遍历容器的地方编写foreach函数。习惯函数式编程的人应该会非常钟情使用foreach,使用foreach的好处多多少少有些,如:
http://www.cnblogs.com/chsword/archive/2007/09/28/910011.html
但主要是编程哲学上层面的。
示例:
void
user_mgr_t::foreach(boost::function<
void
(user_t&)> func_){
for
(iterator it = m_users.begin(); it != m_users.end() ++it){
func_(it->second);
}
}
|
比如要实现dump 接口,不需要重写关于迭代器的代码
void
user_mgr_t:dump(){
struct
lambda {
static
void
print(user_t& user){
//! print(tostring(user);
}
};
this
->foreach(lambda::print);
}
|
实际上,上面的代码变通的生成了匿名函数,如果是c++ 11 标准的编译器,本可以写的更简洁一些:
this->foreach([](user_t& user) {} );
但是我大部分时间编写的程序都要运行在centos 上,你知道吗它的gcc版本是gcc 4.1.2, 所以大部分时间我都是用变通的方式使用lambda函数。
Lambda 函数结合任务队列实现异步
常见的使用任务队列实现异步的代码如下:
void
service_t:async_update_user(
long
uid){
task_queue->post(boost::bind(&service_t:sync_update_user_impl,
this
, uid));
}
void
service_t:sync_update_user_impl(
long
uid){
user_t& user = get_user(uid);
user.update()
}
|
这样做的缺点是,一个接口要响应的写两遍函数,如果一个函数的参数变了,那么另一个参数也要跟着改动。并且代码也不是很美观。使用lambda可以让异步看起来更直观,仿佛就是在接口函数中立刻完成一样。示例代码:
void
service_t:async_update_user(
long
uid){
struct
lambda {
static
void
update_user_impl(service_t* servie,
long
uid){
user_t& user = servie->get_user(uid);
user.update();
}
};
task_queue->post(boost::bind(&lambda:update_user_impl,
this
, uid));
}
|
这样当要改动该接口时,直接在该接口内修改代码,非常直观。
5. 奇技淫巧
利用shared_ptr 实现map/reduce
Map/reduce的语义是先将任务划分为多个任务,投递到多个worker中并发执行,其产生的结果经reduce汇总后生成最终的结果。Shared_ptr的语义是什么呢?当最后一个shared_ptr析构时,将会调用托管对象的析构函数。语义和map/reduce过程非常相近。我们只需自己实现讲请求划分多个任务即可。示例过程如下:
- l 定义请求托管对象,加入我们需要在10个文件中搜索“oh nice”字符串出现的次数,定义托管结构体如下:
struct
reducer{
void
set_result(
int
index,
long
result) {
m_result[index] = result;
}
~reducer(){
long
total = 0;
for
(
int
i = 0; i <
sizeof
(m_result); ++i){
total += m_result[i];
}
//! post total to somewhere
}
long
m_result[10];
};
|
- l 定义执行任务的 worker
void
worker_t:exe(
int
index_, shared_ptr<reducer> ret) {
ret->set_result(index, 100);
}
|
- l 将任务分割后,投递给不同的worker
shared_ptr<reducer> ret(
new
reducer());
for
(
int
i = 0; i < 10; ++i)
{
task_queue[i]->post(boost::bind(&worker_t:exe, i, ret));
}
|