由简入深,适时复习,温故知新。 — housir
λ演算基于最简单的定义函数的思想:
一为函数抽象λx.E,由λ说明的x在函数体E中出现均为形参变元。E是一个λ表达式。
一为函数应用(λx.E)(a),即E中的x均由a置换变成E(a)。
接上一篇 博客 继续写点有关lambda演算的东西。
基本函数
- 基本的λ表达式
// 布尔类型
T = λx.λy.x // True
F = λx.λy.y // False
// 数字
0=λx.λy.y //与F的λ表达式相同
1=λx.λy.x y
2=λx.λy.x(x y)
n=λx.λy.x(x(…(x y)…) // λy.之后有n个x
- 基本操作函数