lambda演算

本文深入探讨λ演算,从基本函数出发,包括λ表达式和函数应用。通过实例解析判零(zerop)、加法(add)和后继(succ)等功能,展示λ演算的强大计算能力。
摘要由CSDN通过智能技术生成

由简入深,适时复习,温故知新。 — housir

λ演算基于最简单的定义函数的思想:
一为函数抽象λx.E,由λ说明的x在函数体E中出现均为形参变元。E是一个λ表达式。
一为函数应用(λx.E)(a),即E中的x均由a置换变成E(a)。

接上一篇 博客 继续写点有关lambda演算的东西。

基本函数

  • 基本的λ表达式
// 布尔类型
T = λx.λy.x  // True
F = λx.λy.y  // False
// 数字
0=λx.λy.y            //与F的λ表达式相同
1=λx.λy.x y  
2=λx.λy.x(x y)
n=λx.λy.x(x(…(x y)…)       // λy.之后有n个x
  • 基本操作函数

                
  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值