《利用深度学习框架精确检测意识障碍中的意识》总结

研究背景

1.对DOC患者的临床评估依赖于患者的非反射性行为,往往被证明是一种间接且容易出错的方法,由于经常存在感觉和认知障碍(如失语、瘫痪、失明、耳聋或警觉波动),误诊率很高。
2.现有的脑机接口方法对DOC患者提出了大量的认知要求,因为需要积极参与认知任务,当患者无法精确执行任务时,可能会导致限制。因此迫切需要一种方便且与行为无关的诊断方法。
3.DOC亚群(如UWS、MCS和CMD)的精确区分仍然是一个挑战。深度学习在区分MCS和UWS患者以及识别CMD患者方面的功效仍然是一个未知的领域。

研究内容

1.基于级联3D EfficientNet-B3的深度学习框架“DeepDOC”区分MCS和UWS,并将其性能与五种最先进的机器学习模型进行了比较。
2.用一个独立的数据集,包含11名DOC患者,以测试我们的模型是否能够识别出具有认知运动分离(CMD)1的患者。这些患者在行为上被诊断为无意识,但可以通过脑机接口(BCI)2方法检测到其意识状态。
3.使用梯度加权类激活映射算法(Grad-CAM),我们发现后皮层,包括视觉皮层、后中颞回、后扣带回、楔前叶和小脑,相比于其他大脑区域在分类中起到了更大的作用。本研究提供了一种便捷且准确的方法,利用rs-fMRI数据检测MCS和CMD患者的隐蔽意识。
4.此外,我们研究了稳健DeepDOC框架的最佳rs-fMRI3数据持续时间,并评估了全脑模型是否是本研究的最合适选择。

模型

MRI数据采集

在磁共振成像扫描过程中,健康受试者被要求闭上眼睛,在保持警觉的同时放松,不要进行任何结构化的思考。对所有患者提供相同的指导。对于从ZJH招募的参与者,使用飞利浦Ingenia 3特斯拉扫描仪获取MR图像。使用T2加权EPI序列(TR/TE/θ = 2000 ms/30 ms/90◦,FOV = 224 × 224 mm, matrix = 64 × 64, 3.5 mm厚度33片,间隙= 0.7 mm, 240次扫描)获取功能图像。对于从GZGH招募的参与者,使用GE Signa 3特斯拉扫描仪获取MR图像。使用T2加权EPI序列(TR/TE/θ = 2000 ms/30 ms/90◦,视场= 240 × 240 mm,矩阵= 64 × 64,厚度为4 mm的35片,间隙= 0 mm, 240次扫描)获取功能图像。对于从HSH招募的参与者,使用西门子3特斯拉扫描仪获取MR图像。使用T2*加权EPI序列(TR/TE/θ = 2000 ms/35 ms/90◦,FOV = 256 × 256 mm, matrix = 64 × 64, 4-mm厚度33片,间隙= 0 mm, 200次扫描)获取功能图像。每个参与者还获得了高分辨率t1加权三维梯度回波图像,以便于功能图像的配准和定位。

MRI数据处理

1.MRI图像的预处理使用CONN工具箱进行,该工具箱是统计参数映射(SPM)程序的扩展,并在MATLAB 2019a中实现。与最新研究方法一致的标准化预处理管道应用于每个参与者,包括以下步骤(图1B):(1)去除初始四个功能体积以减轻T1饱和效应;(2)功能图像与结构图像的共配准;(3)通过使用CONN工具箱中的默认设置的伪影检测工具(ART),对头部运动相关伪影进行调整和校正;(4)校正功能性切片时间差异;(5)归一化至标准立体定向Montreal Neurological Institute (MNI)空间,重采样至3 mm各向同性体素;(6)将功能和结构数据分割为灰质、白质和脑脊液组织;(7)利用半最大值全宽度为6 mm的高斯核进行空间平滑。
2.为了进一步减弱生理信号伪影的影响,我们采用了基于解剖分量的噪声校正(aCompCor)方法,该方法使用CONN工具箱实现。这种方法有效地从rs-fMRI数据中去除运动、呼吸和心脏伪影。此外,通过回归异常扫描(运动> 0.9 mm),采用ART来减轻运动相关的伪影。这一步进一步减少了accompcorr算法可能忽略的焦移效应。这种方法的采用与最近专注于DOC的rs-fMRI研究的既定实践相一致,其在保持数据时间完整性方面的效用已得到充分证明。aCompCor方法能够熟练处理一系列潜在的混杂因素,包括去除源自白质和脑脊液的信号的五种潜在噪声成分,估计运动参数(包括三个平移和三个旋转参数以及它们各自的一阶导数),校正由ART识别的伪影,并考虑了与扫描条件有关的初级效应。此外,我们进行了线性去趋势处理,并在0.01至0.1 Hz的频率范围内应用了时间带通滤波。这种双步骤方法旨在减轻fMRI数据中的低频漂移效应和高频呼吸/心脏噪声。

脑机接口诊断

1.在rs-fMRI扫描完成后,在BCI- base数据集中对每位患者进行基于脑电图的BCI诊断。本脑机接口实验旨在识别CMD患者,CMD指的是那些表现出隐性意识但缺乏显性行为反应的个体。基于脑机接口结果,我们旨在评估我们的框架DeepDOC是否能够使用rs-fMRI图像准确区分CMD患者(预测为MCS)和潜在的非CMD患者(预测为UWS),目的是建立一种替代和方便的诊断方法。
2.在脑机接口实验中,参与者被要求将注意力集中在特定的刺激上,并执行简单的任务。每位患者都进行了校准和在线评估。校准过程包括10个试验,旨在训练SVM分类器来检测与视觉刺激相关的P300电位。
在线评估阶段包含5个区块,每个区块由10个试验组成,用于更新从校准阶段导出的SVM模型。为了确定DOC患者的剩余意识,采用了三种不同的范式,包括视听、数字和摄影刺激。刺激模式的选择是个性化的,每个病人的护理人员根据病人的具体症状选择最合适的刺激。
关于每个范例的实验程序的详细信息可在补充材料1中获得。遵循先前研究的既定标准, BCI准确度超过64%(相当于机会水平)的DOC患者将被诊断为CMD。采用卡方检验,p = 0.05为显著性水平。要全面了解脑机接口实验,请参考参考文献。

DeepDOC

1.在医学图像处理领域,卷积神经网络表现出了显著的优势。EffentNet代表了一种尖端的CNN架构和缩放技术,它使用复合系数统一调整深度、宽度和分辨率的所有维度(Tan和Le, 2019)。此外,最近利用功能磁共振成像的研究证实了effentnet的有效性(Eweje et al, 2021)。与传统的2d - cnn相比,3D- cnn天生擅长处理空间和时间信息,这要归功于它们使用了3D卷积滤波器。因此,考虑到这些因素以及本研究中的样本量,我们选择了3D EfficientNet-B3作为骨架,并引入了DeepDOC,这是一个由两个连续的、定制的3D EfficientNet-B3网络组成的框架,使用PyTorch实现(图1C)。第一个网络专门用于区分DOC患者和对照组,以便与最近的相关研究进行直接比较。那些被确定患有DOC的人随后被路由到第二个网络中,该网络在MCS和UWS之间,或者在CMD和潜在的非CMD病例之间执行区分任务。同时,该框架生成了指示意识状态的神经成像生物标志物(图1D)。
2.我们的输入数据由预处理的rs-fMRI时间序列组成,代表功能性脑体积的序列,每个体积的尺寸为61 × 73 × 61(长×宽×高)。没有对该数据执行特征工程。每个个体的数据由N个体积组成,形成N × 61 × 73 × 61的数组形状,个体之间的N值不同。具体而言,为了确定可靠DeepDOC性能所需的最佳rs-fMRI数据量,我们还进行了不同分析时间的实验,包括10 s, 30 s, 1 min, 2 min和4 min。为了符合3D网络的输入要求,该阵列在第二维上被解压缩,形成N × 1 × 61 × 73 × 61的阵列形状。我们的3D EfficientNet-B3网络都遵循相同的架构(见补充表S1),从一个干卷积层开始,然后结合七个移动反向瓶颈卷积(MBConv)块,每个块包含深度可分离卷积、膨胀比和挤压激励块。为了防止过拟合,在倒数第二层和最后一层之间插入了一个dropout层。最后的完全连接层(FCL)有两个神经元,利用为我们的分类任务量身定制的Softmax函数。DeepDOC为每个人的每一卷生成了一个预测概率。如果所有体积的平均概率超过阈值,则预测该个体为阳性。对于对照与DOC分类,DOC被定义为阳性,阈值为0.5(默认值)。在MCS与UWS的情况下,UWS被定义为正值,阈值为0.56,通过网格搜索确定,并应用于区分BCI-Base数据集上的CMD和潜在的非CMD。

网络训练与优化

1.为了利用现有的、可推广的知识,利用相对有限的数据集获得新的见解,本研究采用了深度迁移学习策略。具体来说,我们通过使用从ImageNet数据集转移的默认权重初始化它们,并随后使用我们的数据训练它们,对EfficientNet-B3s进行了微调。
2.虽然预先训练的2D版本的效率网络很容易获得,但截至本研究的时间,在线资源中明显缺乏3D版本。为了解决这个问题,我们进行了从2D效率网络到3D效率网络的权重转移过程,确保两种模型中具有类似结构的层具有相应的权重。将批大小设置为128,以二元交叉熵作为损失函数,通过学习率为0.0005、动量为0.009的随机梯度下降(SGD)优化器进行优化。为了防止过拟合和提高效率,我们实施了一个提前停止机制,在两种情况下终止训练:连续5个epoch没有改善或达到200个epoch的最大值。参数调整是通过五倍CV策略进行的。所有实验均在配备NVIDIA Tesla V100 32GB Volta GPU的高性能计算节点上进行,以加快收敛速度。

机器学习模型

1.为了全面评估DeepDOC与SOTA方法在识别MCS和CMD患者方面的性能,我们使用scikit-learn包(https://pypi.org/project/scikit-learn/)实现了五个完善的机器学习模型。这些模型包括线性SVM、LR、RF、XGBoost和AdaBoost。
2.值得注意的是,功能连接(FC)是反映大脑区域之间功能合作程度的直接和直观的指标,而自动解剖标记(AAL)代表了最广泛采用的地图集之一(Tzourio-Mazoyer等,2002)。因此,这些模型中使用的特征是Pearson相关系数矩阵,它描绘了大脑区域之间的FC。
3.以标准MNI空间中的AAL为模板,每个个体得到的矩阵形状为(90,90)。对于所有这些模型,训练和超参数优化都是通过五倍CV过程执行的。评估方法与DeepDOC采用的方法一致,确保了各自性能指标的统一和公平比。

统计

在本研究的所有实验中,我们应用了适当的统计检验方法,如MATERIALS AND METHODS小节和图例中详细说明的那样。样本大小不是通过特定的统计方法预先确定的。所有样本都进行了去标识处理,以确保双盲分析。模型性能在验证集和测试集上使用多种指标进行评估,包括AUC、精确召回曲线下面积(AP)、召回率、特异性、精度、F1分数和准确率。为了估计每个评估指标的95%置信区间(CI),我们对DeepDOC和机器学习模型进行了1000次自举重采样排列。使用Grad-CAM算法分析第一卷积层节点学习到的rs-fMRI特征,以确定与MCS和UWS分类相关的关键区域。

研究方法

受试者

1.对意识障碍(DOC)患者的纳入标准如下:(1)根据CRS-R评估被诊断为无反应性觉醒综合征(UWS)或最小意识状态(MCS);(2)无磁共振成像(MRI)扫描的禁忌症。
2.最初的168名参与者是在2011年至2022年间从三个独立的医疗中心聚集的:广州珠江医院(ZJH, 77名参与者),广州军区广州总医院(GZGH, 28名参与者)和上海华山医院(HSH, 63名参与者),ZJH的对照组由健康个体组成,而HSH的对照组是完全清醒但有脑损伤史的个体。该队列患者的诊断基于昏迷恢复量表修订(CRS-R)评分。因此,该数据集被命名为CRS-Base,并用于模型训练、验证和测试(图1A)。
3.根据上述纳入标准,从CRS-Base数据集中共排除28例患者,其中22例因存在广泛的局灶性脑病变,其中7例为ZJH, 14例为GZGH, 1例为HSH;6个是由于分段和归一化不理想,包括ZJH一个,GZGH一个,HSH四个。因此,CRS-Base数据集最终共包括140名参与者,包括76名UWS患者,25名MCS患者和39名对照组。
4.在2013年至2016年期间,从GZGH收集了11例DOC患者的独立队列,该数据集中的患者同时进行了rs-fMRI扫描和脑机接口实验。该数据集被标记为BCI-Base,并被专门用作独立的测试集,以评估DeepDOC检测隐蔽意识和跨医疗中心推广的能力。
5.没有人被排除在BCI-Base数据集中(图2)。不合格参与者的MRI结果见补充图S1。BCI-Base数据集由11例患者组成,包括4例CMD患者和7例潜在非CMD患者。这些数据集的人口学和临床特征见表1,更详细的信息见补充表S2- S3。

UWS与MCS

区分健康对照组和DOC患者

在区分健康对照组和意识障碍(DOC)患者的任务中,DeepDOC在所有评估指标上均达到了1分,默认的正预测概率阈值为0.5。这表明没有将患者误分类为对照组,反之亦然(见补充图S2和表S4)。

区分UWS与MCS

在后续阶段中,旨在将识别出的DOC个体分类为无反应性觉醒综合征(UWS)或最小意识状态(MCS),我们遵循了与初始阶段相同的严格训练、测试和评估程序,但进行了两个关键修改。
1.首先,为了解决类别不平衡问题,我们对MCS数据进行了过采样,使其样本量接近UWS(76例UWS,75例MCS)。
2.其次,我们使用网格搜索优化了正预测概率阈值(范围为0.1至0.9,步长为0.01)。
3.最终,最合适的阈值为0.56,DeepDOC在该阈值下表现优异,DeepDOC对MCS和UWS患者进行了有效的区分,经5次交叉验证,AUC为0.927,AP为0.977,召回率为0.855,特异性为0.88,精确率为0.956,F1评分为0.903,准确率为0.861(表2)。为直观展示性能,还生成了接收者操作特征曲线(ROCs)(图3A)和精确率-召回率(PR)曲线(图3B)。这些结果证实了DeepDOC在基于静息态功能磁共振成像(rs-fMRI)数据直接区分MCS和UWS的有效性。
4.我们的研究表明,与利用正电子发射计算机断层扫描(PET)、脑电图(EEG)或功能磁共振成像(fMRI)的传统机器学习模型建立的指标相比,深度学习技术作为MCS患者的诊断基准具有相当大的前景。例如,最近的一项研究采用了SVM模型,融合了EEG和fMRI的特征,实现了对UWS和昏迷的MCS的区分,在研究入组和重症监护病房出院时,auc的峰值分别为0.78和0.83 。此外,FDG-PET的应用提供了趋同的证据,表明可以利用脑代谢水平来识别MCS患者,AUC为0.8.27。此外,研究结果表明,视觉和听觉网络之间的FC在识别MCS患者方面达到了91%的显着准确率。总之,我们的DeepDOC模型显示出与现有索引相当的准确性,显示出作为识别MCS的替代和方便方法的巨大潜力。

与流行机器学习方法的比较

问题与解决方案

我们观察到,利用FC特征的ML模型在第二阶段产生了较差的性能,auc不超过0.56。因此,为了提高机器学习模型的性能,我们在两个阶段都采用了特征选择方法4。使用Scikit-learn库的SelectKBest函数5进行特征选择。为了确定类标签相关特征的最优数量(称为K参数),使用网格搜索来识别最佳K值6
因此,第1阶段的k值为16,第2阶段的k值为13。为保持一致性,正面预测概率阈值与DeepDOC使用的阈值保持一致。因此,DeepDOC表现出了优异的性能,如图3、表2以及补充图S2和表S4所示。

结果

1.在区分MCS和UWS的关键任务中,DeepDOC相较于传统机器学习模型展示了显著优势,其AUC提升了0.052至0.167,AP提升了0.025至0.083,准确率提升了7.6%至16%。在评估指标方面,DeepDOC优于五种机器学习模型,强调了深度学习在揭示有助于区分意识状态的隐藏模式方面的内在优势。在所有机器学习模型中,逻辑回归(LR)表现最佳,在MCS与UWS分类任务中达到了0.875的AUC。相比之下,提升模型(boosting models)的表现相对较低,尤其考虑到它们的计算复杂性和资源需求。
2.此外,为了隔离DeepDOC架构的影响,我们训练并测试了一个名为DeepDOC-FC的变体,该变体使用与五个机器学习模型相同的功能连接特征(即使用AAL图谱的所有功能连接)。正如预期,DeepDOC-FC的表现低于机器学习模型(见补充表S5)。这进一步强调了深度学习的优势在于其自动从数据中学习表示的能力,而不是依赖于预定义的特征,如功能连接矩阵(FC)。

通过Grad-CAM分析揭示的意识状态神经影像生物标志物

过程

为了阐明DeepDOC行为的复杂性并增强其可解释性,我们采用了梯度加权类激活映射(Grad-CAM方法)。这种方法能够在对照组、MCS组和UWS组中识别出独特的神经成像模式,从而揭示指示意识状态的显著生物标志物。
通过对每组个体梯度热图进行平均,生成的群体级Grad-CAM梯度热图,突显了对分类任务有重要贡献的像素(图4)。值得注意的是,MCS和UWS患者共享显著的脑区,这些脑区主要位于后皮层,包括视觉皮层、后中颞回、后扣带回、楔前叶和小脑。这些区域在分类中的贡献比其他脑区更为显著。关于对照组和DOC组的平均梯度热图,请参见补充图S3。

结果

1.在阐明对DeepDOC决策过程贡献最大的大脑区域时,重点强调了视觉皮层、后颞中回、后扣带皮层、楔前叶和小脑等区域,这些区域在现有文献中被认为与意识相关。这加强了模型专注于神经相关区域的能力。通过Grad-CAM分析,我们系统地检查了有助于识别MCS患者的关键大脑区域。我们的研究结果强调了后皮层的重要性,包括视觉皮层、后颞中回、后扣带皮层、楔前叶和小脑,与其他大脑区域相比,它们对分类的贡献更大。这些区域,以前被称为维持意识的“后热区”,已被确定为意识的潜在神经相关区域。我们的研究结果通过阐明后皮层在DOC患者意识检测中的关键作用,证实了这一概念。根据信息整合理论,这些区域可能表明意识水平较高的MCS和CMD患者保留了信息整合能力。
2.总的来说,Grad-CAM分析揭示了左半球在模型分类中的主要贡献,这表明在维持意识方面可能存在侧向化。这与先前的意识障碍(DOC)研究相一致。研究表明,左半球的功能连接(FC)完整性可以更好地区分UWS和MCS患者;与健康对照组相比,DOC患者在脑干和左前岛之间的连接中断;左半球受损更可能导致意识障碍;以及左隐窝/前岛的电刺激后意识中断可逆。因此,Grad-CAM分析中强调的左侧化可能暗示意识的侧向化,值得进一步研究。

CMD识别

过程

在BCI-Base数据集上的CMD分类背景下,重点在于识别CMD病例而不遗漏任何一个。因此,特异性指标具有至关重要的意义。DeepDOC表现出色,AUC、AP、特异性和精确度均达到了1。此外,它的召回率为0.857,F1评分为0.923,准确率为0.909,如图5所示。值得注意的是,DeepDOC准确识别了所有四名CMD患者,DeepDOC在使用独立数据集识别CMD患者方面显示出91%的显着准确性,与BCI诊断一致。此外,唯一一个被DeepDOC预测为CMD但未被BCI结果支持的个体,根据CRS-R评估在BCI实验前被诊断为MCS。总的来说,这些结果突显了DeepDOC在跨医疗中心检测隐性意识方面的潜力。

结果

1.传统的脑机接口识别CMD方法依赖于患者对特定外部刺激的神经反应。然而,脑机接口方法可能会引入偏见,特别是当患者经历认知障碍并在持续从事任务时遇到困难时。相比之下,DeepDOC在两个关键方面提供了更方便的CMD识别策略。首先,它利用核磁共振成像,避免了患者参与特定认知任务的必要,从而提高了临床环境的适用性。其次,DeepDOC采用预处理的rs-fMRI图像作为特征,消除了人工特征工程的需要,减轻了由于方法异质性而导致的分类结果的不稳定性。总之,对于DOC患者来说,DeepDOC是一种有前景的、精确的替代方案,特别是在准确识别CMD患者方面。然而,由于可招募的CMD患者数量有限,需要更多的验证来进一步验证DeepDOC对CMD识别的鲁棒性。
2.DeepDOC在识别CMD患者方面表现出令人鼓舞的效率,在独立的BCI基础队列上的AUC为1。为此,DeepDOC为基于rs-fMRI数据诊断CMD患者提供了一个有希望的替代方案,为该领域的创新诊断方法开辟了道路。

rs-fMRI数据的最佳长度

过程

为了研究rs-fMRI数据长度对性能的影响,我们使用不同长度的时间序列(10秒至4分钟)评估DeepDOC,并观察到时间序列长度与模型auc之间存在正相关(补充图s4)。因此,具有完整fMRI数据的DeepDOC优于具有截断数据的DeepDOC。

其他讨论

为了研究全脑模型是否提供了最佳方法,我们在单个脑叶(额叶、顶叶、颞叶和枕叶)的fMRI数据上训练和测试了DeepDOC,用于MCS/ UWS分类。结果表明,与单个大脑区域相比,整个大脑模型捕获了更多用于意识检测的信息特征(补充表S6)。未来的研究可能涉及更大的数据集,并探索特征选择技术,以进一步了解全脑模型中不同大脑区域的具体贡献。综上所述,本研究表明,DeepDOC通过rs-fMRI的深度学习,可以有效区分MCS和UWS病例,同时也可以识别CMD患者。DeepDOC具有较高的准确性、可解释性和泛化能力,为临床环境中这些DOC亚组的鉴别诊断提供了有价值的端到端解决方案。

局限性

1.首先,CRS-R数据集中一些CMD患者可能被误诊为UWS,这可能会影响模型的性能。为了评估这一点,我们在包含已确认CMD和潜在非CMD状态的BCI-Base数据集上测试了DeepDOC。DeepDOC对CMD患者的成功区分表明,尽管存在标签噪声,DeepDOC仍能学习到意识相关的特征。现实世界的临床应用往往涉及由于人为错误或主观判断而导致的固有标签不一致。深度学习的最新进展已经建立了相当程度的对标签噪声的容忍度, DeepDOC对随机误差的鲁棒性表明其对数据不完善的临床场景的潜在适应性。虽然使用CRS-R基础真值进行训练是可以接受的,但随着DOC数据的增长,未来的研究应该探索去噪技术,以进一步减轻标记不准确的影响。
2.由于硬件限制,DeepDOC目前的实现使用3D CNN。虽然结合时间信息的4D CNN有希望,但与3D模型相比,它们需要更多的GPU内存进行训练。使用我们当前的32 GB GPU,即使减少批处理大小也无法解决内存瓶颈。此外,存在软件限制,如PyTorch等框架缺乏对4D卷积层的本地支持。实现自定义代码将引入兼容性问题,并需要大量的开发工作。
3.相对较小的样本量限制了DeepDOC的泛化能力,强调需要更大、更多样化的数据集来进行鲁棒验证。
4.排除患有严重脑部病变的患者限制了DeepDOC对这一特定人群的推广。未来的验证是必要的,以评估其在这些情况下的有效性。梯度分析建议利用大脑后部区域的信息来潜在地减轻病变对模型性能的影响。这种方法包括将这些区域映射到个体患者大脑的原生空间。然而,这种方法的可行性和有效性有待进一步研究。展望未来,我们设想将DeepDOC的应用扩展到更广泛的意识水平诊断,包括MCS+和昏迷。
5.此外,延长fMRI扫描时间可以提供更有代表性的患者意识状态样本,特别是对于表现出明显波动的患者,从而改善数据不一致性。此外,探索其他硬件解决方案(例如,云计算)或研究内存高效的4D CNN架构可能是整合时空信息的有价值的领域。此外,关于多模态成像方法效率的争论促使人们预测,除了简单的连接之外,创新的整合将增强对MCS和CMD患者的识别,成为未来研究的主流趋势。

知识点

一、随机过采样:通过随机重复现有的MCS样本来增加MCS类别的数量。具体操作是随机选择一些MCS样本,复制它们直到MCS样本的数量接近UWS样本的数量。
二、网格搜索:一种系统地遍历多个参数组合的优化方法。在这种情况下,网格搜索用于遍历不同的正预测概率阈值。在0.1-0.9之间,每次增加0.01来测试不同的阈值。评估每个阈值的性能,并找到一个最佳的阈值,使模型在这个阈值下的表现最好。优化后的阈值可以提高模型的分类准确性和整体性能。
三、特征选择是指从原始特征集中挑选出最有用的一部分特征,以减少特征数量、降低模型复杂度并提高模型性能。
四、AUC:曲线下面积;AP:平均精确度;Recall:查全率(召回率);Precision:查准率(精确率);Specificity:特异性=TN/(TN+FP);F1-score:F1分数,定义为精确率和召回率的调和平均值;Accuracy:精度(准确率)。
五、置信区间提供了一个范围,表示在多次实验或样本抽样中,该评估指标的值有概率会落在这个范围内。这是为了给出评估指标的不确定性或稳定性的一种度量。如果置信区间很窄,说明评估指标较为稳定;如果置信区间很宽,说明评估指标可能有较大的波动性。


  1. 缺乏行为命令遵循但对命令遵循表现出适当的皮层反应。 ↩︎

  2. 脑机接口(Brain-Computer Interface, BCI)是一种通过直接读取和处理大脑信号,将人脑与外部设备相连接的技术。BCI系统使得大脑能够直接控制计算机、外骨骼、假肢等外部设备,通常用于医疗康复、辅助设备控制和神经科学研究。 ↩︎

  3. rs-fMRI基于大脑在静息状态下的自发神经活动,参与者在扫描过程中没有特定的任务或刺激,只需保持静息状态,通常被要求闭上眼睛或盯着一个固定点。这种方法测量大脑在静息状态下的自发神经活动,能够揭示大脑不同区域之间的功能性联系和网络结构。 ↩︎

  4. 特征选择可以帮助我们选择最相关的特征,从而减少噪音,提高模型的准确性和效率。 ↩︎

  5. 这个函数通过统计测试选择得分最高的K个特征。具体来说,SelectKBest可以使用不同的评分函数(例如卡方检验、F检验等)来评估每个特征与目标变量之间的关系,并选择得分最高的K个特征。 ↩︎

  6. 网格搜索是一种系统的超参数优化方法,通过指定参数的多个可能值,自动搜索所有可能的参数组合,以找到使模型性能最优的参数组合。在这种情况下,网格搜索帮助我们确定了最佳的K值,即选择多少个特征可以使模型的性能最好。具体步骤如下:
    定义一组可能的K值。
    1.对每个K值,使用SelectKBest进行特征选择。
    2.对每个选择的特征子集训练和评估机器学习模型。
    3.选择使模型性能(例如AUC评分)最好的K值。 ↩︎

  • 8
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值