题目大意:有一颗苹果树,开始时每个节点都有一个苹果,有两种操作,一种是问当前节点和它所有的子节点的苹果的个数和,第二个是改变当前节点的苹果数(0到1,1到0)
思路:刚开始直接用题目中给的树进行乱搞,果断TLE,,因为当树退化成链的时候就完蛋了
然后求一部分区间的和当然可以用线段树(本身就是一个树),但是这道题中的树不能直接用线段树,因为不只是叶子节点可以改变(虽然线段树乱搞下应该也可以),而且不是一个满二叉树(应该是这个名字吧。。),所以先进行个dfs,建立一个映射的关系,搜索每个节点的时候都可以记录开始和结束的时间,结束的时候当前节点的子节点肯定都搜索一遍了,所以根据这两个时间就可以在映射之后求整个子树的和~
看不懂请看:http://www.cnblogs.com/gj-Acit/p/3236843.html
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<vector>
using namespace std;
const int maxn = 100100;
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
struct Side{
int u,v,next;
}side[maxn];
int top;
int node[maxn];
void add_side(int u,int v){
side[top].u = u;
side[top].v = v;
side[top].next = node[u];
node[u] = top ++;
}
int time[maxn][2];
int t;
void dfs(int now){
t ++;
time[now][0] = t;
for(int i = node[now];i != -1;i = side[i].next){
dfs(side[i].v);
}
time[now][1] = t;
}
///xian duan shu
int sum[maxn<<2];
void pushup(int rt){
sum[rt] = sum[rt<<1] + sum[rt<<1|1];
}
void update(int x,int l,int r,int rt){
if(l == r){
sum[rt] = !sum[rt];
return;
}
int m = (l + r)>>1;
if(x <= m)update(x,lson);
else update(x,rson);
pushup(rt);
}
void build(int l,int r,int rt){
if(l == r){
sum[rt] = 1;
return ;
}
int m = (l + r)>>1;
build(lson);
build(rson);
pushup(rt);
}
int query(int L,int R,int l,int r,int rt){
if(L <= l&&r <= R){
return sum[rt];
}
int m = (l + r)>>1;
int ans = 0;
if(L <= m)ans += query(L,R,lson);
if(R > m)ans += query(L,R,rson);
return ans;
}
int main(){
int n;
while(~scanf("%d",&n)){
if(n == 0)break;
top = 0;
memset(node,-1,sizeof(node));
for(int i = 0;i < n-1;i ++){
int a,b;
scanf("%d%d",&a,&b);
add_side(a,b);
}
memset(time,0,sizeof(time));
t = 0;
dfs(1);
// for(int i = 1;i <= n;i ++){
// cout<<time[i][0]<<' '<<time[i][1]<<endl;
// }
build(1,n,1);
int m;
scanf("%d",&m);
while(m --){
char op[4];
int x;
scanf("%s%d",op,&x);
if(op[0] == 'Q'){
printf("%d\n",query(time[x][0],time[x][1],1,n,1));
}
else if(op[0] == 'C'){
update(time[x][0],1,n,1);
}
}
}
return 0;
}