POJ 3304 判断线段和直线相交

题意:给n个线段,问是否存在这样的一条直线,满足这n个线段在投影有公共点

思路:如果存在这样的直线,那么这样的直线一定是一组平行的直线都可以(投影),投影有公共点,从公共点做直线的垂线,那么这条垂线一定和所有的线段相交,也就是如果存在一个直线和所有的线段相交就可以。如果存在这样的垂线,考虑如果稍微偏移一定的角度,一定偏移到了某条线段的端点的时候不能再偏移,所以只要枚举端点就可以了(开始时枚举的是某起点-某终点,后来才发现应该是某端点到某端点)

代码:

#include<cstdio>
#include<algorithm>
#include<cstring>
#include<iostream>
#include<cmath>
using namespace std;
const double INF = 1e200;
const double EP = 1e-8;
const int maxn = 5100;
const double PI = acos(-1);
struct POINT{
    double x;
    double y;
    POINT(double a = 0,double b = 0){x = a;y = b;}
};///点 定义
struct SEGMENT{///line segment
    POINT s;
    POINT e;
    SEGMENT(POINT a,POINT b){s = a;e = b;}
    SEGMENT(){}
};///线段 定义
struct LINE{
    double a;
    double b;
    double c;
    LINE(double da,double db,double dc){a = da;b = db;c = dc;}///一般式
    LINE(double x1,double y1,double x2,double y2){///根据两个点求出一般式
        a = y1 - y2;b = x2 - x1;c = x1*y2 - x2*y1;
        if(a < 0){a*=-1;b*=-1;c*=-1;}
    }
};///ax + by + c = 0&&a >= 0
int multiply(POINT sp,POINT ep,POINT op){
    return ((sp.x - op.x)*(ep.y - op.y) - (ep.x - op.x)*(sp.y - op.y));
}///向量op->sp X op->ep的叉乘,小于0:ep在op->sp顺时针方向//大于0:0:ep在op->sp逆时针方向//等于0:三点共线
int lineintersect(LINE l1,LINE l2,POINT &p){
    double d = l1.a*l2.b-l2.a*l1.b;
    double d2 = l1.a*l2.c-l2.a*l1.c;
    double d3 = l1.b*l2.c-l2.b*l1.c;
    if(fabs(d) < EP&&fabs(d2) < EP&&fabs(d3) < EP)return 2;
    p.x = (l2.c*l1.b-l1.c*l2.b)/d;
    p.y = (l2.a*l1.c-l1.a*l2.c)/d;
    if(fabs(d) < EP)return 0;
    return 1;
}///求两直线交点,有交点返回1和交点,没有返回0,重合返回2
double point_dis(POINT a,POINT b){
    return sqrt((a.x - b.x)*(a.x - b.x) + (a.y - b.y)*(a.y - b.y));
}
int n;
SEGMENT seg[110];
bool judge(POINT a,POINT b){
    if(fabs(a.x - b.x) < EP&&fabs(a.y - b.y) < EP)return false;
    LINE now(a.x,a.y,b.x,b.y);
    for(int k = 0;k < n;k ++){
        LINE tmp(seg[k].s.x,seg[k].s.y,seg[k].e.x,seg[k].e.y);
        POINT pp;
        int r = lineintersect(tmp,now,pp);
        if(r == 2)continue;
        else if(r == 0)return false;
        else if(fabs(point_dis(seg[k].s,pp) + point_dis(seg[k].e,pp) - point_dis(seg[k].s,seg[k].e)) > EP)return false;
    }
    return true;
}
int main(){
    //freopen("in.txt","r",stdin);
    int T;
    scanf("%d",&T);
    while(T--){
        scanf("%d",&n);
        for(int i = 0;i < n;i ++){
            POINT a,b;
            scanf("%lf%lf%lf%lf",&a.x,&a.y,&b.x,&b.y);
            //cin>>a.x>>a.y>>b.x>>b.y;
            seg[i].s = a;
            seg[i].e = b;
        }
        if(n == 1||n == 2){
            puts("Yes!");continue;
        }
        bool ok = 0;
        for(int i = 0;i < n;i ++){
            for(int j = 0;j < n;j ++){
                ok = judge(seg[i].s,seg[j].s);if(ok)break;
                ok = judge(seg[i].s,seg[j].e);if(ok)break;
                ok = judge(seg[i].e,seg[j].s);if(ok)break;
                ok = judge(seg[i].e,seg[j].e);if(ok)break;
            }if(ok)break;
        }
        if(ok)puts("Yes!");
        else puts("No!");
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值