题目描述
给定长 H H H 宽 W W W 的方阵,一共有 H × W H \times W H×W 个格子,这些格子开始时都是白色的。
现在,你可以将一行或一列格子涂黑,问最少的操作次数使得涂黑色的格数 ≥ N \ge N ≥N。
但是,我们的精力只有 K K K,将一行涂黑需要耗费 ⌈ H 2 ⌉ \lceil \frac{H}{2} \rceil ⌈2H⌉ 的精力,将一列涂黑需要耗费 ⌈ W 2 ⌉ \lceil \frac{W}{2} \rceil ⌈2W⌉ 的精力。所以,当最少的操作次数耗费了 > K >K >K 的精力时,输出 − 1 -1 −1。
输入/输出
输入
一行 4 4 4 个整数 H , W , N , K H, W, N, K H,W,N,K。
输出
一行一个整数,表示答案。
样例组
样例 1 输入
3 7 10 20 3\ 7\ 10\ 20 3 7 10 20
样例 1 输出
2 2 2
样例 1 解释
任选两行涂黑,耗费 4 × 2 = 8 4 \times 2 = 8 4×2=8 点精力。
样例 2 输入
12 14 112 54 12\ 14\ 112\ 54 12 14 112 54
样例 2 输出
− 1 -1 −1
样例 2 解释
任选 8 8 8 行涂黑,耗费 7 × 8 = 56 > 54 7 \times 8 = 56 > 54 7×8=56>54 点精力,输出 − 1 -1 −1。
数据范围
对于
10
%
10\%
10% 的数据,保证
K
<
0
K < 0
K<0
对于另外
20
%
20\%
20% 的数据,保证
H
≤
W
H \le W
H≤W
对于另外
20
%
20\%
20% 的数据,保证
H
>
W
H > W
H>W
对于另外
20
%
20\%
20% 的数据,保证
1
≤
H
,
W
,
N
,
K
≤
1
0
4
1 \le H,W,N,K \le 10^4
1≤H,W,N,K≤104
对于
100
%
100\%
100% 的数据,保证
1
≤
H
,
W
,
N
,
K
≤
2
10
−
1
1 \le H,W,N,K \le 2^{10}-1
1≤H,W,N,K≤210−1