Python numpy,创建数组,数据类型,dtype属性

本文探讨了Python的numpy库,重点讲解如何创建数组以及dtype属性的作用。通过示例代码,展示了不同方式生成numpy数组,并解析了dtype在管理数组数据类型中的关键功能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

demo.py(numpy,创建数组):

# coding=utf-8
import numpy as np


# 使用numpy生成数组,得到ndarray的类型
t1 = np.array([1,2,3])
print(t1)   # [1 2 3]
print(type(t1))  # <class 'numpy.ndarray'>

t2 = np.array(range(10))
print(t2)   # [0 1 2 3 4 5 6 7 8 9]
print(type(t2))  # <class 'numpy.ndarray'>

t3 = np.arange(4,10,2)   # 2表示步长,可以省略
print(t3)   # [4 6 8]
print(type(t3))  # <class 'numpy.ndarray'>

 

demo.py(dtype,numpy中的数据类型):

# coding=utf-8
import numpy as np
import random


# numpy中的数据类型
t1 = np.arange(10)

# dtype表示存放的数据类型
print(t1.dtype)   # int64 (64位电脑默认是int64)


t2 = np.array(range(1,4),dtype="float32")  # dtype参数指定numpy中的数据类型
# t2 = np.array(range(1,4),dtype="i1")
print(t2)   # [1. 2. 3.]
print(t2.dtype)  # float32


# numpy中的bool类型
t3 = np.array([1,1,0,1,0,0],dtype=bool)
print(t3)   # [True True False True False False]
print(t3.dtype)  # bool


# 修改数据类型
t4 = t3.astype("int8")   # bool类型转成int8类型
print(t4)   # [1 1 0 1 0 0]
print(t4.dtype)  # int8


# numpy中的小数 float64
t5 = np.array([random.random() for i in range(5)])
print(t5)   # [0.55897787 0.6086214  0.25367407 0.80690028 0.72111836]
print(t5.dtype)  # float64 (64位电脑默认是float64)

t6 = np.round(t5,2)  # 保留2位小数
print(t6)   # [0.56 0.61 0.25 0.81 0.72]
print(t6.dtype)  # float64

 

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值