欧拉函数与欧拉定理

本文转自acdreamer的博客

先来介绍几个与欧拉函数有关的定理:


定理一:设m与n是互素的正整数,那么


定理二:当n为奇数时,有

 

因为2n是偶数,偶数与偶数一定不互素,所以只考虑2n与小于它的奇数互素的情况,则恰好就等于n的欧拉函数值。


定理三:设p是素数,a是一个正整数,那么

 

关于这个定理的证明用到容斥:

 

由于表示小于互素数的正整数个数,所以用减去与它不互素的数的个数就行了。

那么小于不互素数的个数就是p的倍数个数,有个。所以定理得证。



定理四:设为正整数n的素数幂分解,那么

 


 

这个定理可以根据定理一和定理三证明,其实用到的就是容斥。如果对容斥熟悉,其实完全就可以直接容斥。



定理五:设n是一个正整数,那么

 


 

这个其实可以看莫比乌斯反演就明白了。


定理六:设m是正整数,(a,m)=1,则:是同于方程的解。


定理七:如果n大于2,那么n的欧拉函数值是偶数。


求欧拉函数值

long long Euler(long long n)
{
    long long ans = n;
    for (long long i = 2; i * i <= n; i++)
    {
        if (n % i == 0)
        {
            ans = ans - ans / i;
            while (n % i == 0) n /= i;
        }
    }
    if (n > 1)
        ans = ans - ans / n;
    return ans;
}

利用递推法求欧拉函数值:

 

算法原理:开始令i的欧拉函数值等于它本身,如果i为偶数,可以利用定理二变为求奇数的。

若p是一个正整数满足,那么p是素数,在遍历过程中如果遇到欧拉函数值等于自身的情况,那么

说明该数为素数。把这个数的欧拉函数值改变,同时也把能被该素因子整除的数改变。

void init()
{
    for (int i = 1; i < maxn; i++) Euler[i] = i;
    for (int i = 2; i < maxn; i += 2) Euler[i] >>= 1;
    for (int i = 3; i < maxn; i += 2)
    {
        if (Euler[i] == i)
        {
            for (int j = i; j < maxn; j += i)
                Euler[i] = Euler[i] - Euler[i] / i;
        }
    }
}



  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值