浅谈欧拉函数

前言

欧拉函数听起来很高大上,但其实非常简单,也是NOIP里的一个基础知识,希望大家看完我的博客能有所理解。
数论是数学的一个分支,它只讨论正整数的性质,所以以下都是针对正整数进行研究的。

什么是欧拉函数

欧拉函数是小于x的整数中与x互质的数的个数,一般用φ(x)表示。特殊的,φ(1)=1。

如何计算欧拉函数

通式: φ(x)=xi=1n(11pi)
φ(1)=1
其中p1, p2……pn为x的所有质因数,x是正整数。
那么,怎么理解这个公式呢?对于x的一个质因数pi,因为x以内pi的倍数是均匀分布的,所以x以内有1pi的数是pi的倍数,那么有1-1pi的数不是pi的倍数。再对于pj,同理,有1-1pj的数不是pj的倍数,所以有(1-1pi)*(1-1pj)的数既不是pi的倍数,又不是pj的倍数。最后就有i=1n(11pi)的数与x互质,个数自然就是xi=1n(11pi)
还不理解?没关系,举个例子。比如x=12,12以内有12的数是2的倍数,那么有1-12的数不是2的倍数(1,3,5,7,9,11),这6个数里又有13的数是3的倍数,只剩下(1-12)* (1-13)的数既不是2的倍数,也不是3的倍数(1,5,7,11)。这样剩下的 12*(1-12)*(1-13),即4个数与12互质,所以φ(12)=4。

积性函数

先介绍一下什么是积性函数,后面将会用到。若当m与n互质时,f(m*n)=f(m)*f(n),那么f是积性函数。若对任意正整数,都有f(m*n)=f(m)*f(n)成立,则f是完全积性函数。

欧拉函数的几个性质

1.对于质数p,φ(p)=p-1。
2.若p为质数,n=pk,则φ(n)=pk-pk1
3.欧拉函数是积性函数,但不是完全积性函数。若m,n互质,则φ(m*n)=φ(m)*φ(n)。特殊的,当m=2,n为奇数时,φ(2*n)=φ(n)。
4.当n>2时,φ(n)是偶数。
5.小于n的数中,与n互质的数的总和为:φ(n) * n / 2 (n>1)。
6.n=d|nφ(d),即n的因数(包括1和它自己)的欧拉函数之和等于n。

欧拉函数性质的粗略证明

1.因为p是质数,所以1到n-1都与n互质。
2.n只有一个质因数p,根据公式φ(x)=xi=1n(11pi) =x*(1-1p)=pk*(1-1p)=pk-pk1
3.因为m与n互质,所以它们没有公共的质因数。设m有am个质因数,n有an个质因数。φ(m)* φ(n)=m*n * i=1am(11pi)* i=1an(11pi)=m*n * i=1am+an(11pi)=φ(m*n)。
4.前几个都可以利用公式证明,这个却不行。首先有一个基本事实(我不想证明),若gcd(n,m)=1,则gcd(n,n-m)=1(设n>m)。当m=n-m时,n=2*m,那么n>2时gcd(n,m)<>2,与前提相悖,故m<>n-m。换句话说,n>2时,与n互质的数是成对出现的,所以φ(n)必为偶数。
5.证明这个也要用到上面所说的基本事实。与n互质的数一个是m,那么还存在另一个数n-m也与n互质。所以与n互质的数的平均数是n/2,而个数又是φ(n),可以得到这些数的和就是φ(n)*n/2。
6.证明1(理性的证明):
这个证明起来有点麻烦。设F(n)=d|nφ(d)。首先证明F(n)是个积性函数:设m,n互质,则要证F(mn)=F(m)F(n)F(m)F(n)=i|mφ(i)j|nφ(j)=φ(i1)φ(j1)+φ(i1)φ(j2)+...+φ(i2)φ(j1)+φ(i2)φ(j2)+...+φ(ikm)φ(jkn)这里假设i1,i2,...ikm为m的所有因数,j1,j2,...jkn为n的所有因数之和,因为m与n互质,所以它们的因数也必然全都两两互质,而欧拉函数又是个积性函数,即φ(ikjk)=φ(ik)φ(jk),那么上式又可以等价于φ(i1j1)+φ(i1j2)+...+φ(i2j1)+φ(i2j2)+...+φ(ikmjkn)可以发现,i1j1,i1j2,...,i2j1,i2j2,...,ikmjkn这些数构成了m*n的所有因数。那么这些数的欧拉函数之和就等于F(m*n),所以F(m*n)=F(m)*F(n),证得F是一个积性函数。根据这个性质,F可以一直分解到n为质数的幂的情况。那么讨论当p为质数时,F(p^k)怎么计算。因为pk的因数只有1,p,p2,p3,...,pk,根据F的定义,直接展开来计算就行了。(根据欧拉函数的性质2,φ(pk)=pkp(k1)F(pk)=φ(1)+φ(p)+φ(p2)+...+φ(pk)=1+(p1)+(p2p)+...+(pkp(k1))=pk既然对于质数的幂,F(n)=n成立,而F有是个积性函数,这个结论就可以扩展到任意正整数了。至此,命题得证。
证明2(感性的证明):
以12为例。12的因子有1,2,3,4,6,12。把与这些数互质的数列出来:
1:1
2:1
3:1 2
4:1 3
6:1 5
12 1 5 7 11
不妨把这些数作为分母,把与这些数互质的数作为分子,写成分数形式:
1/1
1/2
1/3 2/3
1/4 3/4
1/6 5/6
1/12 5/12 7/12 11/12
显然,每一行的数的个数就是该行的分母的欧拉函数值。倘若把这些数都改成以12为分母的数:
12/12
6/12
4/12 8/12
3/12 9/12
2/12 10/12
1/12 5/12 7/12 11/12
可以发现,这些数是以12为分母,1~12为分子的所有数,所以个数为12个。所以与12互质的数的欧拉函数值之和就是12。这样,命题大概就被证明了吧。

求欧拉函数

埃拉托斯特尼筛求欧拉函数

观察欧拉函数的公式,φ(x)=xi=1n(11pi) = xi=1npi1pi 。我们用phi[x]表示φ(x)。可以一开始把phi[x]赋值为x,然后每次找到它的质因数就phi[x]=phi[x]/pi*(pi-1)(先除再乘,避免溢出)。当然,若只要求一个数的欧拉函数,可以从1到sqrt(n)扫一遍,若gcd(i,n)=1就更新phi[n]。复杂度为O(logn)(代码就不给了)。那要求1~n所有数的欧拉函数呢?可以用埃拉托斯特尼筛的思想,每次找到一个质数,就把它的倍数更新掉。这个复杂度虽然不是O(n),但还是挺快的(据说是O(n*ln ln n),关于证明,可以点这里,虽然我看不懂)。
代码如下:

void euler(int n)
{
    for (int i=1;i<=n;i++) phi[i]=i;
    for (int i=2;i<=n;i++)
    {
        if (phi[i]==i)//这代表i是质数
        {
            for (int j=i;j<=n;j+=i)
            {
                phi[j]=phi[j]/i*(i-1);//把i的倍数更新掉
            }
        }
    }
}

欧拉筛求欧拉函数

前提是要懂欧拉筛。每个数被最小的因子筛掉的同时,再进行判断。i表示当前做到的这个数,prime[j]表示当前做到的质数,那要被筛掉的合数就是i*prime[j]。若prime[j]在这个合数里只出现一次(i%prime[j]!=0),也就是i和prime[j]互质时,则根据欧拉函数的积性函数的性质,phi[i * prime[j]]=phi[i] * phi[prime[j]]。若prime[j]在这个合数里出现了不止一次(i%prime[j]=0),也就是这个合数的所有质因子都在i里出现过,那么根据公式,φ(i * prime[j])=prime[j] * i * k=1n(11pk) =φ(i) *prime[j]。复杂度为O(n)。
还是看代码吧:

void euler(int n)
{
    phi[1]=1;//1要特判 
    for (int i=2;i<=n;i++)
    {
        if (flag[i]==0)//这代表i是质数 
        {
            prime[++num]=i;
            phi[i]=i-1;
        }
        for (int j=1;j<=num&&prime[j]*i<=n;j++)//经典的欧拉筛写法 
        {
            flag[i*prime[j]]=1;//先把这个合数标记掉 
            if (i%prime[j]==0)
            {
                phi[i*prime[j]]=phi[i]*prime[j];//若prime[j]是i的质因子,则根据计算公式,i已经包括i*prime[j]的所有质因子 
                break;//经典欧拉筛的核心语句,这样能保证每个数只会被自己最小的因子筛掉一次 
            }
            else phi[i*prime[j]]=phi[i]*phi[prime[j]];//利用了欧拉函数是个积性函数的性质 
        }
    }
}

总结

有关欧拉函数的性质,只需做个了解,而求欧拉函数的代码,却是一定要会写的。这只是走进数论世界的第一步。

阅读更多
上一篇吃奶酪——状压DP
下一篇导弹拦截——单调队列
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭