NYOJ-640 Geometric sum

点击打开题目链接

题意:计算(a + a^2 + … + a^n) mod m. (1≤a,n,m≤10^18)

令 S=a + a^2 + … + a^n.

1)当n为偶数时:S=a + a^2 + … + a^(n/2)  +  a^(n/2)*(a + a^2 + … + a^(n/2));

2)当n为奇数时:S=a + a^2 + … + a^(n/2)  +  a^(n/2+1) +   a^(n/2+1)*(a + a^2 + … + a^(n/2));

故可用二分幂解决该问题。

#include <iostream>
#include <cstdio>
typedef long long LL;
LL Cal_Mul(LL a,LL b,LL m)   //计算a*b%m
{
    LL res(0),base(a);
    while(b)
    {
        if(b&1) res=(res+base)%m;
        base=(base+base)%m;
        b>>=1;
    }
    return res;
}
LL Cal_Pow(LL a,LL b,LL m)  //计算a^b%m
{
    LL res(1),base(a);
    while(b)
    {
        if(b&1) res=Cal_Mul(res,base,m);
        base=Cal_Mul(base,base,m);
        b>>=1;
    }
    return res;
}
LL Solve(LL a,LL n,LL m)   //计算(a+a^2+…+a^n)%m
{
    if(n==1) return a%m;
    LL res=Solve(a,n/2,m);
    if(n&1)
    {
        LL temp=Cal_Pow(a,n/2+1,m);
        return (res+temp+Cal_Mul(res,temp,m))%m;
    }
    else
    {
        LL temp=Cal_Pow(a,n/2,m);
        return (res+Cal_Mul(res,temp,m))%m;
    }
}
//#define LOCAL
int main()
{
#ifdef LOCAL
    freopen("Input.txt","r",stdin);
    freopen("Output1.txt","w",stdout);
#endif // LOCAL
    LL a,m,n;
    while(~scanf("%lld%lld%lld",&a,&n,&m))
        printf("%lld\n",Solve(a,n,m));
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值