题意:计算(a + a^2 + … + a^n) mod m. (1≤a,n,m≤10^18)
令 S=a + a^2 + … + a^n.
1)当n为偶数时:S=a + a^2 + … + a^(n/2) + a^(n/2)*(a + a^2 + … + a^(n/2));
2)当n为奇数时:S=a + a^2 + … + a^(n/2) + a^(n/2+1) + a^(n/2+1)*(a + a^2 + … + a^(n/2));
故可用二分幂解决该问题。
#include <iostream>
#include <cstdio>
typedef long long LL;
LL Cal_Mul(LL a,LL b,LL m) //计算a*b%m
{
LL res(0),base(a);
while(b)
{
if(b&1) res=(res+base)%m;
base=(base+base)%m;
b>>=1;
}
return res;
}
LL Cal_Pow(LL a,LL b,LL m) //计算a^b%m
{
LL res(1),base(a);
while(b)
{
if(b&1) res=Cal_Mul(res,base,m);
base=Cal_Mul(base,base,m);
b>>=1;
}
return res;
}
LL Solve(LL a,LL n,LL m) //计算(a+a^2+…+a^n)%m
{
if(n==1) return a%m;
LL res=Solve(a,n/2,m);
if(n&1)
{
LL temp=Cal_Pow(a,n/2+1,m);
return (res+temp+Cal_Mul(res,temp,m))%m;
}
else
{
LL temp=Cal_Pow(a,n/2,m);
return (res+Cal_Mul(res,temp,m))%m;
}
}
//#define LOCAL
int main()
{
#ifdef LOCAL
freopen("Input.txt","r",stdin);
freopen("Output1.txt","w",stdout);
#endif // LOCAL
LL a,m,n;
while(~scanf("%lld%lld%lld",&a,&n,&m))
printf("%lld\n",Solve(a,n,m));
return 0;
}