不容易系列之(4)——考新郎
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 21455 Accepted Submission(s): 7905
Problem Description
国庆期间,省城HZ刚刚举行了一场盛大的集体婚礼,为了使婚礼进行的丰富一些,司仪临时想出了有一个有意思的节目,叫做"考新郎",具体的操作是这样的:
首先,给每位新娘打扮得几乎一模一样,并盖上大大的红盖头随机坐成一排;
然后,让各位新郎寻找自己的新娘.每人只准找一个,并且不允许多人找一个.
最后,揭开盖头,如果找错了对象就要当众跪搓衣板...
看来做新郎也不是容易的事情...
假设一共有N对新婚夫妇,其中有M个新郎找错了新娘,求发生这种情况一共有多少种可能.
首先,给每位新娘打扮得几乎一模一样,并盖上大大的红盖头随机坐成一排;
然后,让各位新郎寻找自己的新娘.每人只准找一个,并且不允许多人找一个.
最后,揭开盖头,如果找错了对象就要当众跪搓衣板...
看来做新郎也不是容易的事情...
假设一共有N对新婚夫妇,其中有M个新郎找错了新娘,求发生这种情况一共有多少种可能.
Input
输入数据的第一行是一个整数C,表示测试实例的个数,然后是C行数据,每行包含两个整数N和M(1<M<=N<=20)。
Output
对于每个测试实例,请输出一共有多少种发生这种情况的可能,每个实例的输出占一行。
Sample Input
2 2 2 3 2
Sample Output
1 3解题思路:错排+排列组合错排公式是什么 :递推的方法推导 错排公式 当n个编号元素放在n个编号位置,元素编号与位置编号各不对应的方法数用M(n)表示,那么M(n-1)就表示n-1个编号元素放在n-1个编号位置,各不对应的方法数,其它类推. 第一步,把第n个元素放在一个位置,比如位置k,一共有n-1种方法; 第二步,放编号为k的元素,这时有两种情况.1,把它放到位置n,那么,对于剩下的n-2个元素,就有M(n-2)种方法;2,不把它放到位置n,这时,对于这n-2个元素,有M(n-1)种方法; 综上得到 M(n)=(n-1)[M(n-2)+M(n-1)] 特殊地,M(1)=0,M(2)=1 下面通过这个递推关系推导通项公式: 为方便起见,设M(k)=k!N(k), (k=1,2,…,n) 则N(1)=0,N(2)=1/2 n>=3时,n!N(n)=(n-1)(n-1)!N(n-1)+(n-1)!N(n-2) 即 nN(n)=(n-1)N(n-1)+N(n-2) 于是有N(n)-N(n-1)=-[N(n-1)-N(n-2)]/n=(-1/n)[-1/(n-1)][-1/(n-2)]…(-1/3)[N(2)-N(1)]=(-1)^n/n! 因此 N(n-1)-N(n-2)=(-1)^(n-1)/(n-1)! N(2)-N(1)=(-1)^2/2! 相加,可得 N(n)=(-1)^2/2!+…+(-1)^(n-1)/(n-1)!+(-1)^n/n! 因此 M(n)=n![(-1)^2/2!+…+(-1)^(n-1)/(n-1)!+(-1)^n/n!] 可以得到 错排公式 为M(n)=n!(1/2!-1/3!+…..+(-1)^n/n!)附代码:#include<stdio.h> __int64 c(__int64 n,__int64 m)//求排列组合 { if(m==0||n==m) return 1; else return c(n-1,m)+c(n-1,m-1); } int main() { __int64 a[22],i,n,m; a[1]=0;a[2]=1; for(i=3;i<=21;i++) a[i]=(i-1)*(a[i-1]+a[i-2]);//求I组全部错排的种类 __int64 t; scanf("%I64d",&t); while(t--) { scanf("%I64d %I64d",&n,&m); printf("%I64d\n",c(n,m)*a[m]); } return 0; }