还是畅通工程
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 27489 Accepted Submission(s): 12243
Problem Description
某省调查乡村交通状况,得到的统计表中列出了任意两村庄间的距离。省政府“畅通工程”的目标是使全省任何两个村庄间都可以实现公路交通(但不一定有直接的公路相连,只要能间接通过公路可达即可),并要求铺设的公路总长度为最小。请计算最小的公路总长度。
Input
测试输入包含若干测试用例。每个测试用例的第1行给出村庄数目N ( < 100 );随后的N(N-1)/2行对应村庄间的距离,每行给出一对正整数,分别是两个村庄的编号,以及此两村庄间的距离。为简单起见,村庄从1到N编号。
当N为0时,输入结束,该用例不被处理。
当N为0时,输入结束,该用例不被处理。
Output
对每个测试用例,在1行里输出最小的公路总长度。
Sample Input
3 1 2 1 1 3 2 2 3 4 4 1 2 1 1 3 4 1 4 1 2 3 3 2 4 2 3 4 5 0
Sample Output
3 5Huge input, scanf is recommended.HintHint
Source
很久以前就写过的题的,当时用的是kruskal写的,觉得麻烦就没用prime写过,前几天长木给讲了一种简单的模板,试了试,挺好理解的。
#include<stdio.h>
#include<string.h>
#define inf 0x3f3f3f3f
int vis[1010];
int dist[1010];
int map[100][100];
int n;
int getnext()
{
int i,pos=-1,dis=inf;
for(i=1;i<=n;++i)
if(!vis[i]&&dist[i]<dis){
dis=dist[i];pos=i;
}
return pos;
}
int prim()
{
int sum=0,i,u,v;
for(i=1;i<=n;++i){
vis[i]=0;dist[i]=inf;
}
u=1;dist[1]=0;
while(u!=-1){
vis[u]=1;sum+=dist[u];
for(i=1;i<=n;++i)
if(!vis[i]&&dist[i]>map[u][i])
dist[i]=map[u][i];
u=getnext();
}
return sum;
}
int main ()
{
int m,a,b,c,i;
while(scanf("%d",&n),n){
memset(map,0x3f3f3f,sizeof(map));
memset(vis,0,sizeof(vis));
m=n*(n-1)/2;
for(i=0;i<m;++i){
scanf("%d%d%d",&a,&b,&c);
if(c<map[a][b])
map[a][b]=map[b][a]=c;
}
printf("%d\n",prim());
}
return 0;
}
下面是之前用kruskal写的
#include<stdio.h>
#include<algorithm>
using namespace std;
struct app{
int st,ed,w;
};
int p[1000];
int find (int x)
{
return p[x]==x?x:p[x]=find(p[x]);
}
int mergr(int a,int b)
{
int x1,x2;
x1=find(a);
x2=find(b);
if(x1!=x2)
{
p[x1]=x2;
return 1;
}
return 0;
}
int cmp(app s1,app s2)
{
return s1.w<s2.w;
}
int main ()
{
int n,m,sum=0,con,i;
app s[10000];
while(scanf("%d",&n),n)
{
con=0;
m=n*(n-1)/2;
for(i=1;i<=m;i++)
scanf("%d%d%d",&s[i].st,&s[i].ed,&s[i].w);
sort(s+1,s+1+m,cmp);
for(i=1;i<=n;i++)
p[i]=i;
for(sum=0,i=1;i<=m;i++)
if(mergr(s[i].st,s[i].ed))
{
sum=sum+s[i].w;
}
printf("%d\n",sum);
}
return 0;
}