背包问题(课件内容(讲解,容易理解))

背包问题(课件内容(讲解,容易理解))

01背包:

题目
有N件物品和一个容量为V的背包。第i件物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使价值总和最大。
基本思路
这是最基础的背包问题,特点是:每种物品仅有一件,可以选择放或不放。
用子问题定义状态:即f[i][v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值。则其状态转移方程便是:
f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}

 

这个方程非常重要,基本上所有跟背包相关的问题的方程都是由它衍生出来的。所以有必要将它详细解释一下:“将前i件物品放入容量为v的背包中”这个子问题,若只考虑第i件物品的策略(放或不放),那么就可以转化为一个只牵扯前i-1件物品的问题。如果不放第i件物品,那么问题就转化为“ 前i-1件物品放入容量为v的背包中”,价值为f[i-1][v];如果 放第i件物品,那么问题就转化为“ 前i-1件物品放入剩下的容量为v-c[i]的背包中”, 此时能获得的最大价值就是 f[i-1][v-c[i]]再加上通过放入 第i件物品获得的价值w[i]
     算法:(伪代码,有助理解)
     
初始化:  f0
For(i=1  to  n)
{
      for( j=1 to v )
      {
             f[i][j]=f[i-1][j];
             if(j>=c[i])
             {
                  f[i][j]=max{f[i-1][j] ,f[i-1][j-c[i]]+w[i]};
             } 
       }
}
例子: 5 个物品,(重量,价值)分别为: ( 5 12 ),( 4 3 ), ( 7 10 ) ,( 2 3 ),( 6 6 ) , 背包的容量为 15 ,求能装的最大价值。
 
背包 容量
0
1
2
3
4
5
6
7
8
9
1 0
1 1
1 2
1 3
1 4
1 5
5 物品
0
0
3
3
3
12
12
12
12
15
15
18
22
22
25
25
4 物品
0
0
3
3
3
12
12
12
12
15
15
18
22
22
25
25
3 物品
0
0
0
0
3
12
12
12
12
15
15
15
22
22
22
22
2 物品
0
0
0
0
3
12
12
12
12
15
15
15
15
15
15
15
1 物品
0
0
0
0
0
12
12
12
12
12
12
12
12
12
12
12
 
从下到上(行顺序),从右到左(列顺序)依次填充表格。以倒数第二行为例:此时仅有两个物品(物品1和物品2),当背包容量为15时,能装的最大的价值为15,当背包的容量为14的时候,背包能装的最大价值量为15……,直到背包容量为9,背包能装的最大价值量都为15。当背包容量为8时 (此时只能放一个物品,由于物品1的体积为5,价值为12,而物品2的体积为4,价值为3,所以选择价值大的放入背包),背包能装的最大价值量为12,一直到背包容量为5。当背包容量为4时 (只能放入物品2),此时背包能装的价值量3,。当背包容量小于4时,由于物品1和物品2的体积都大于等于4,所以物品1和物品2都不能放入背包,因而价值为0。
 
注意:每个空里填的都是,在当前可以选择的物品中,根据当前背包容量,使背包填充的价值最大。如:当填充物品3这一行表格时:物品1和物品2、物品3都可以选择,当背包容量为15时,此时填充,物品1 (5,12)和物品2(7,10),填充价值最大为22.。
 
代码:
二维数组易于理解:
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
int main()
{
	int f[6][16];
	int cos[6]={0,5,4,7,2,6};
	int val[6]={0,12,3,10,3,6};
	memset(f,0,sizeof(f));
	for(int i=1;i<=5;i++)
	{
		for(int j=1;j<=15;j++)
		{
			f[i][j]=f[i-1][j];
			if(j>=cos[i])
			{
				f[i][j]=max(f[i-1][j],f[i-1][j-cos[i]]+val[i]);
			}
		}
	}
	for(int i=1;i<=5;i++)
	{
		for(int j=1;j<=15;j++)
		  printf("%d ",f[i][j]);
		  printf("\n");
	}
	printf("最大价值:%d\n",f[5][15]); 

优化将f数组转化为一维数组
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
int main()
{
	int f[16];
	int cos[6]={0,5,4,7,2,6};
	int val[6]={0,12,3,10,3,6};
	memset(f,0,sizeof(f));
	for(int i=1;i<=5;i++)
	{
		for(int j=15;j>=1;j--)/*注意,这里j是从大到小进行的*/
		{
			if(j>=cos[i])
			{
				f[j]=max(f[j],f[j-cos[i]]+val[i]);
			}
		}
	}
	for(int i=1;i<=15;i++)
	{
		  printf("%d ",f[i]);
	}
	
} 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值