HDU-1426(Sudoku Killer)(dfs+巧妙思维)

HDU-1426(Sudoku Killer)(dfs+巧妙思维)

Sudoku Killer

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 6079    Accepted Submission(s): 1933


Problem Description
自从2006年3月10日至11日的首届数独世界锦标赛以后,数独这项游戏越来越受到人们的喜爱和重视。
据说,在2008北京奥运会上,会将数独列为一个单独的项目进行比赛,冠军将有可能获得的一份巨大的奖品———HDU免费七日游外加lcy亲笔签名以及同hdu acm team合影留念的机会。
所以全球人民前仆后继,为了奖品日夜训练茶饭不思。当然也包括初学者linle,不过他太笨了又没有多少耐性,只能做做最最基本的数独题,不过他还是想得到那些奖品,你能帮帮他吗?你只要把答案告诉他就可以,不用教他是怎么做的。

数独游戏的规则是这样的:在一个9x9的方格中,你需要把数字1-9填写到空格当中,并且使方格的每一行和每一列中都包含1-9这九个数字。同时还要保证,空格中用粗线划分成9个3x3的方格也同时包含1-9这九个数字。比如有这样一个题,大家可以仔细观察一下,在这里面每行、每列,以及每个3x3的方格都包含1-9这九个数字。

例题:


答案:

 

Input
本题包含多组测试,每组之间由一个空行隔开。每组测试会给你一个 9*9 的矩阵,同一行相邻的两个元素用一个空格分开。其中1-9代表该位置的已经填好的数,问号(?)表示需要你填的数。
 

Output
对于每组测试,请输出它的解,同一行相邻的两个数用一个空格分开。两组解之间要一个空行。
对于每组测试数据保证它有且只有一个解。
 

Sample Input
  
  
7 1 2 ? 6 ? 3 5 8 ? 6 5 2 ? 7 1 ? 4 ? ? 8 5 1 3 6 7 2 9 2 4 ? 5 6 ? 3 7 5 ? 6 ? ? ? 2 4 1 1 ? 3 7 2 ? 9 ? 5 ? ? 1 9 7 5 4 8 6 6 ? 7 8 3 ? 5 1 9 8 5 9 ? 4 ? ? 2 3
 

Sample Output
  
  
7 1 2 4 6 9 3 5 8 3 6 5 2 8 7 1 9 4 4 9 8 5 1 3 6 7 2 9 2 4 1 5 6 8 3 7 5 7 6 3 9 8 2 4 1 1 8 3 7 2 4 9 6 5 2 3 1 9 7 5 4 8 6 6 4 7 8 3 2 5 1 9 8 5 9 6 4 1 7 2 3
 
//注;这题的麻烦之处在于对输入数据的处理和转化。该题的判断也比较麻烦,在同一列、同一行中不能出现相同的数字。而且把大矩形分成9个小矩形,且每个小矩形中,不能出现相同的数字。

其中:大矩形分成9个小矩形,且每个小矩形中,不能出现相同的数字。这个最麻烦。

下面的代码中把大矩形分成九个小矩形,每行有3个小矩形,共有3行 。进行编号,mark3[i][j][k]数组:第i行,第j个小矩形中数字k有没有被标记 。



借助数组:c[10]={0,1,1,1,2,2,2,3,3,3},根据当前点坐标判断当前点坐落在第几行第几列的小矩形中。

例:(i,j)

则(i,j)在第c[i]行第c[j]个小矩形中。这种方法巧妙且快速。(实际上,c[ ]数组存的是已经计算好的坐标与小矩形坐标对应的值)

之前用的是下面的多重if()判断,判断(i,j)坐落在第几行第几列的小矩形中。在初始化mark3数组以及在dfs()判断中都需用到小矩形,因此增加了很多代码,并且非常耗时。之后用c[10]={0,1,1,1,2,2,2,3,3,3}数组就解决了这些问题。

 多重if()判断,初始化mark3[][][]数组:

<strong><span style="font-size:18px;color:#009900;background-color: rgb(255, 255, 255);">if(i<=3)
{
	if(j<=3)
	  mark3[1][1][t]=1;
	else if(3<j&&j<=6)
	        mark3[1][2][t]=1;
		 else
		 {
		   mark3[1][3][t]=1;
	     }
}
else  if(i>3&&i<=6)
{
		if(j<=3)
		   mark3[2][1][t]=1;
		else if(3<j&&j<=6)
		   mark3[2][2][t]=1;
		else
		{
		    mark3[2][3][t]=1;
		}
}
else
{
	if(j<=3)
	   mark3[3][1][t]=1;
	else if(3<j&&j<=6)
	   mark3[3][2][t]=1;
	else
	{
	   mark3[3][3][t]=1;
	}
}</span></strong>

第一次写时,是把整个图全部遍历一遍,结果超时,且由于设置不当,在回溯过程中一组结果被输出多次。

后来看了别人的题解,改变了自己的思路。把所有的“?”点取出来,单独搜索这些点,就解决了上面的超时和结果被多次输出的问题。

My  solution:

/*2016.4.6*/

AC:

#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
int map[10][10],mark[10][10],mark2[10][10],mark3[4][4][10],cnt,aa,bb,c[10]={0,1,1,1,2,2,2,3,3,3};
//mark[i][k]数组:第i行中数字k有没有被标记(使用过) ,mark2[k][j]数组:第j列中数字k有没有被标记(使用过) 
//mark3[i][j][k]数组:第i行,第j个小矩形中数字k有没有被标记 。把大矩形分成9个小矩形,每行有3个小矩形,共有3行 
char cr[10];
int st;
struct stu
{
	int x,y;
}node[80];//记录?点 
void dfs(int t)
{
	int i,j,k,h,g;
	if(t==cnt)
	{
		for(i=1;i<=9;i++)
		{
			for(j=1;j<9;j++)
			printf("%d ",map[i][j]);
			printf("%d\n",map[i][9]);
		}
		return ;
	}
	i=node[t].x;
	j=node[t].y;
	for(k=1;k<=9;k++)//填充数字1~9,查看哪个符合
	{
		if(mark[i][k]==0&&mark2[j][k]==0&&mark3[c[i]][c[j]][k]==0)判断是否满足:同行、同列、同一个小矩形中数字不重复  
		{
			map[i][j]=k;//赋值 
			mark[i][k]=1;//标记 
			mark2[j][k]=1;//标记 
			mark3[c[i]][c[j]][k]=1;//标记 
			dfs(t+1);
			map[i][j]=0;
			mark[i][k]=0;
			mark2[j][k]=0;
			mark3[c[i]][c[j]][k]=0;
		}
	}
}
int main()
{
	int i,j,k,n,m,g=0,t;
     while(scanf("%s",cr)!=EOF)
	{
		if(g!=0)
		printf("\n");
		g=1;
		cnt=0;
		st=0;
		memset(mark,0,sizeof(mark));
		memset(mark2,0,sizeof(mark2));
		memset(mark3,0,sizeof(mark3));
		if(cr[0]!='?')
		{
			t=cr[0]-'0';
			map[1][1]=t;
			mark[1][t]=1;
			mark2[1][t]=1;
			mark3[1][1][t]=1;
		}
		else
		{
			node[cnt].x=1;
			node[cnt].y=1;
			map[1][1]=0;
			cnt++;
		}
		for(j=2;j<=9;j++)
		{
			scanf("%s",cr);
			if(cr[0]!='?')
			{
				t=cr[0]-'0';
				map[1][j]=t;
				mark[1][t]=1;
				mark2[j][t]=1;
				mark3[1][c[j]][t]=1;
			}
			else
			{
				node[cnt].x=1;
				node[cnt].y=j;
				map[1][j]=0;
				cnt++;
			}
		}
		for(i=2;i<=9;i++)
		for(j=1;j<=9;j++)
		{
			scanf("%s",cr);
			if(cr[0]!='?')
			{
				t=cr[0]-'0';
				map[i][j]=t;
				mark[i][t]=1;
				mark2[j][t]=1;
				mark3[c[i]][c[j]][t]=1;
		    }
			else
			{
				node[cnt].x=i;
				node[cnt].y=j;
				map[i][j]=0;
				cnt++;
			}
		}
		dfs(0);
	}
	return 0;
}


之前的代码:(如下)

/*超时,且结果输出多次:*/

#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
int map[10][10],mark[10][10],mark2[10][10],mark3[4][4][10],cnt,aa,bb,c[10]={0,1,1,1,2,2,2,3,3,3};
char cr[10];
int st;
void dfs(int t,int x)
{
	int i,j,k,h,g;
	if(t==(cnt+1))
	{

		for(i=1;i<=3;i++)
		{
			for(j=1;j<3;j++)
			printf("%d ",map[i][j]);
			printf("%d\n",map[i][3]);
		}
	
		return ;
	}
	for(i=x;i<=3;i++)
	{
		for(j=1;j<=3;j++)//两层for循环遍历所有点 
		{
			if(map[i][j]==0)//判断当前点是不是“?”点 
			{
				for(k=1;k<=3;k++)//填充数字1~9,判断是否符合 
				{
					if(mark[i][k]==0&&mark2[j][k]==0&&mark3[c[i]][c[j]][k]==0)//判断是否满足:同列同行同一个小矩形中数字不重复 
					{
						map[i][j]=k;
						mark[i][k]=1;
						mark2[j][k]=1;
						mark3[c[i]][c[j]][k]=1;
						dfs(t+1,i);
						map[i][j]=0;
						mark[i][k]=0;
						mark2[j][k]=0; 
						mark3[c[i]][c[j]][k]=0;
					}
				}
			}
		}
	}
}
int main()
{
	int i,j,k,n,m,g,t;
	while(scanf("%s",cr)!=EOF)
	{
		cnt=0;
		st=0;
		memset(mark,0,sizeof(mark));
		memset(mark2,0,sizeof(mark2));
		memset(mark3,0,sizeof(mark3));
		if(cr[0]!='?')
		{
			t=cr[0]-'0';
			map[1][1]=t;
			mark[1][t]=1;
			mark2[1][t]=1;
			mark3[1][1][t]=1;
		}
		else
		{
			map[1][1]=0;
			cnt++;
		}
		for(j=2;j<=3;j++)
		{
			scanf("%s",cr);
			if(cr[0]!='?')
			{
				t=cr[0]-'0';
				map[1][j]=t;
				mark[1][t]=1;
				mark2[j][t]=1;
				mark3[1][c[j]][t]=1;
			}
			else
			{
				map[1][j]=0;
				cnt++;
			}
		}
		for(i=2;i<=3;i++)
		for(j=1;j<=3;j++)
		{
			scanf("%s",cr);
			if(cr[0]!='?')
			{
				t=cr[0]-'0';
				map[i][j]=t;
				mark[i][t]=1;
				mark2[j][t]=1;
				mark3[c[i]][c[j]][t]=1;
		    }
			else
			{
				map[i][j]=0;
				cnt++;
			}
		}
		dfs(1,1);
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值