zoj 3502 Contest //dp

Contest


Time Limit: 2 Seconds       Memory Limit: 65536 KB

Lazyman is going to join the programming contest! There are n problems in the contest. Because Lazyman is so lazy, he just tried each problem once and only once. However each problem in the contest may be not independent, it may have some relationship with other problems. So here is a propbility P n*n matrix. The jth element of the ith row is denoted by Pij. Suppose he have tried m problems, a1,a2,...am (No matter the problems are solved or not.) (1 ≤ a1,a2,...am ≤ n) If he tries the rth problems next, (r!=a1,a2,...am) the propbility that he can solve it is the maximum value of the m + 1 values, PrrPa1r%, Pa2r%, ... Pamr%.

Help him to decide the order he tries the problems to make the expected number of the solved problems maximum.

Input

There are multiple test cases. The first line of input is an integer T (0 < T ≤ 100), indicating the number of test cases. Then T test cases follow. The first line of each test case is a positive integer n (0 < n ≤ 10). Then comes n lines. The jth element of the ith line is an integer Pij. (0 ≤ Pij ≤100 1 ≤ i,j ≤ n)

Output

For each test case, output 2 lines. The first line is the maxmum expected number of problems, accurated to the nearest 0.01. The second the order he should try each problems to achieve this expected number of problems. If there are several sequeces achieve the same maximum expected number, choose the lexicographically smallest one. Use capital letters to denote each problems please. (Start from A)

Sample Input
2
1
0
2
2 3
5 7
Sample Output
0.00
A
0.12
BA
Hint
For the 2nd sample, if the order is AB:
The probility of the result that he solves problem A is 0.02*(1-0.07)=0.0186
The probility of the result that he solves problem B is (1-0.02)*0.07=0.0686
The probility of the result that he solves problem A and B is 0.02*0.07=0.0014
So the expected number of the problem sovled is  1*0.0186+1*0.0686+2*0.0014=0.09

For the 2nd sample, if the order is BA:
The probility of the result that he solves problem A is (1-0.07)*0.05=0.0465
The probility of the result that he solves problem B is 0.07*(1-0.05)=0.0665
The probility of the result that he solves problem A and B is 0.07*0.05=0.0035
So the expected number of the problem sovled is  1*0.0465+1*0.0665+2*0.0035=0.12

Author:  CAO, Peng

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值