【洛谷2926/BZOJ1607】[USACO08DEC]Patting Heads拍头(筛法)

题目:

洛谷2926

(截止至本博客发表时,BZOJ1607题面有误,正确题面请到洛谷2926查看)

分析:

一句话题意:给定n个数{ai},求对于每个ai有多少个数aj满足ai|aj (1i,jnij)
按题意模拟的话O(n2)肯定过不去。考虑对于一个数ai,它仅会对所有aik(1kk为整数) 产生1的贡献。于是可以用M/ai(M=max({ai}))的时间给所有ans[aik]加上1 (ans[x]表示有多少个ai能整除x) ,据说这样的复杂度是O(nlogn)
注意可能有多个ai相等,枚举ai可能会多次执行相同的操作,费时间。用cnt[x]记录有多少个i满足a[i]=x。枚举x,每个xkx的贡献是cnt[x]
以及一头牛不会拍自己的头,所以最终答案是ans[ai]1(详见代码)

代码:

#include <cstdio>
using namespace std;

namespace zyt
{
    const int M = 1e6 + 10, N = 1e5 + 10;
    void work()
    {
        static int ans[M], cnt[M], arr[N];
        int n;
        scanf("%d", &n);
        for (int i = 1; i <= n; i++)
        {
            scanf("%d", &arr[i]);
            cnt[arr[i]]++;
        }
        for (int i = 1; i <= M; i++)
            if (cnt[i])
                for (int j = i; j <= M; j += i)
                    ans[j] += cnt[i];
        for (int i = 1; i <= n; i++)
            printf("%d\n", ans[arr[i]] - 1);

    }
}
int main()
{
    zyt::work();
    return 0;
}
阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/hqddm1253679098/article/details/79948615
个人分类: 数学
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭