【BZOJ2149】拆迁队(斜率优化DP+CDQ分治)

题目:

一个斜率优化+CDQ好题

BZOJ2149

分析:

先吐槽一下题意:保留房子反而要给赔偿金是什么鬼哦……

第一问是一个经典问题。直接求原序列的最长上升子序列是错误的。比如 { 1 , 2 , 2 , 3 } \{1,2,2,3\} {1,2,2,3},选择 { 1 , 2 , 3 } \{1,2,3\} {1,2,3}不改变后会发现无论如何修改都无法变成一个严格上升序列。只能选择 { 1 , 2 } \{1,2\} {1,2},把原序列改成 { 1 , 2 , 3 , 4 } \{1,2,3,4\} {1,2,3,4}

考虑对于两个数 a i a_i ai a j ( j &lt; i ) a_j(j&lt;i) aj(j<i) a i a_i ai能接在 a j a_j aj后面的充要条件是 a i − a j ≥ i − j a_i-a_j\geq i-j aiajij(这样中间才能塞下 i − j − 1 i-j-1 ij1个数形成上升序列)。移项得到 a i − i ≥ a j − j a_i-i\geq a_j-j aiiajj,所以应该把每个数减去它的编号作为权值然后求最长非降子序列。由于要求美观度为正整数,所以若 a i − i &lt; 0 a_i-i&lt;0 aii<0,则 i i i不能作为序列的开端。下面的代码展示了 O ( n l o g 2 n ) O(nlog_2n) O(nlog2n)求法(其中 c [ i ] = a [ i ] − i c[i]=a[i]-i c[i]=a[i]i f [ i ] f[i] f[i]表示以 i i i结尾的最长非降子序列的长度)。

int solve()
{
	int ans = 0;
	memset(tmp, INF, sizeof(int[n + 1]));
	for (int i = 1; i <= n; i++)
	{
		if (c[i] < 0)
			f[i] = 0;
		else
		{
			int pos = upper_bound(tmp + 1, tmp + ans + 1, c[i]) - tmp;
			tmp[pos] = c[i];
			ans = max(ans, pos);
			f[i] = pos;
		}
		v[f[i]].push_back(i);
	}
	return ans;
}

然后来看第二问。设 d p [ i ] dp[i] dp[i]为将前 i i i个数变成单调上升序列的最小总花费。则 d p [ i ] dp[i] dp[i]可以由 d p [ j ] dp[j] dp[j]转移而来的必要条件是 i &gt; j i&gt;j i>j a [ i ] − i &gt; a [ j ] − j a[i]-i&gt;a[j]-j a[i]i>a[j]j f [ i ] = f [ j ] + 1 f[i]=f[j]+1 f[i]=f[j]+1(若 f [ i ] &gt; f [ j ] + 1 f[i]&gt;f[j]+1 f[i]>f[j]+1,则不满足“保留最多的旧房子”;若 f [ i ] &lt; f [ j ] + 1 f[i]&lt;f[j]+1 f[i]<f[j]+1,说明你 f [ i ] f[i] f[i]算错了)。

转移时,最优解显然是把 a [ k ] ( j &lt; k &lt; i ) a[k](j&lt;k&lt;i) a[k](j<k<i)变成一个以 a [ j ] + 1 a[j]+1 a[j]+1为首项,公差为 1 1 1的等差数列。由于 a [ i ] − i &gt; a [ j ] − j a[i]-i&gt;a[j]-j a[i]i>a[j]j,所以改完以后一定有 a [ i − 1 ] &lt; a [ i ] a[i-1]&lt;a[i] a[i1]<a[i]

d p [ i ] = m i n { d p [ j ] + [ a [ j ] + 1 + a [ j ] + ( i − j − 1 ) ] × ( i − j − 1 ) 2 + a [ i ] + b [ i ] } dp[i]=min\{dp[j]+\frac{[a[j]+1+a[j]+(i-j-1)]\times(i-j-1)}{2}+a[i]+b[i]\} dp[i]=min{dp[j]+2[a[j]+1+a[j]+(ij1)]×(ij1)+a[i]+b[i]}

整理一下,得到:

d p [ i ] = m i n { d p [ j ] + a [ j ] × ( i − j − 1 ) + i ( i − 1 ) 2 + j ( j + 1 ) 2 + − i j + a [ i ] + b [ i ] } dp[i]=min\{dp[j]+a[j]\times(i-j-1)+\frac{i(i-1)}{2}+\frac{j(j+1)}{2}+-ij+a[i]+b[i]\} dp[i]=min{dp[j]+a[j]×(ij1)+2i(i1)+2j(j+1)+ij+a[i]+b[i]}

可以根据 f [ i ] f[i] f[i]分层,一起处理所有 f [ j ] = k − 1 f[j]=k-1 f[j]=k1 j j j f [ i ] = k f[i]=k f[i]=k i i i的贡献。下面考虑每一层的情况。

未完待续……

代码:

方便起见,在序列首加一个 0 0 0 a [ 0 ] = f [ 0 ] = 0 a[0]=f[0]=0 a[0]=f[0]=0)。这样可以保证改造后美观度为正(因为 f [ i ] = 1 f[i]=1 f[i]=1 d p [ i ] dp[i] dp[i]必然从 d p [ 0 ] dp[0] dp[0]转移而来);在序列尾加一个无穷大作为 a [ n + 1 ] a[n+1] a[n+1] d p [ n + 1 ] − a [ n + 1 ] dp[n+1]-a[n+1] dp[n+1]a[n+1]即为答案。

#include <cstdio>
#include <algorithm>
#include <cctype>
#include <cstring>
#include <vector>
using namespace std;

namespace zyt
{
	template<typename T>
	inline void read(T &x)
	{
		char c;
		bool f = false;
		x = 0;
		do
			c = getchar();
		while (c != '-' && !isdigit(c));
		if (c == '-')
			f = true, c = getchar();
		do
			x = x * 10 + c - '0', c = getchar();
		while (isdigit(c));
		if (f)
			x = -x;
	}
	template<typename T>
	inline void write(T x)
	{
		static char buf[20];
		char *pos = buf;
		if (x < 0)
			putchar('-'), x = -x;
		do
			*pos++ = x % 10 + '0';
		while (x /= 10);
		while (pos > buf)
			putchar(*--pos);
	}
	typedef long long ll;
	typedef long double ld;
	const int N = 1e5 + 10, INF = 0x3f3f3f3f;
	const ll LINF = 0x3f3f3f3f3f3f3f3fLL;
	int n, a[N], b[N], c[N], f[N], tmp[N];
	ll dp[N];
	vector<int> v[N];
	int solve()
	{
		int ans = 0;
		memset(tmp, INF, sizeof(int[n + 1]));
		for (int i = 1; i <= n; i++)
		{
			if (c[i] < 0)
				f[i] = 0;
			else
			{
				int pos = upper_bound(tmp + 1, tmp + ans + 1, c[i]) - tmp;
				tmp[pos] = c[i];
				ans = max(ans, pos);
				f[i] = pos;
			}
			v[f[i]].push_back(i);
		}
		v[0].push_back(0);
		return ans;
	}
	inline ll x(const int i)
	{
		return i - a[i];
	}
	inline ll y(const int i)
	{
		return dp[i] - (ll)(i + 1) * a[i] + (ll)i * (i + 1) / 2;
	}
	inline ld ratio(const int i, const int j)
	{
		if (x(i) == x(j))
			return y(i) < y(j) ? -LINF : LINF;
		else
			return (ld)(y(i) - y(j)) / (x(i) - x(j));
	}
	struct node
	{
		int pos;
		bool type;
		bool operator < (const node &b) const
		{
			return pos < b.pos;
		}
	}arr[N];
	const int CHANGE = 0, QUERY = 1;
	void CDQ(const int l, const int r)
	{
		if (l == r)
			return;
		int mid = (l + r) >> 1, i = l, j = mid + 1, k = l;
		static node tmp[N];
		static int st[N];
		CDQ(l, mid), CDQ(mid + 1, r);
		int top = 0;
		while (i <= mid && j <= r)
		{
			if (x(arr[i].pos) >= x(arr[j].pos))
			{
				if (arr[i].type == CHANGE)
				{
					while (top > 1 && ratio(st[top - 2], st[top - 1]) < ratio(st[top - 1], arr[i].pos))
						--top;
					st[top++] = arr[i].pos;
				}
				tmp[k++] = arr[i++];
			}
			else
			{
				if (arr[j].type == QUERY && top)
				{
					int l = 0, r = top - 2, ans = top - 1;
					while (l <= r)
					{
						int mid = (l + r) >> 1;
						if (ratio(st[mid], st[mid + 1]) < arr[j].pos)
							r = mid - 1, ans = mid;
						else
							l = mid + 1;
					}
					dp[arr[j].pos] = min(dp[arr[j].pos], 
						dp[st[ans]] + 
						(ll)((a[st[ans]] << 1) + arr[j].pos - st[ans]) * (arr[j].pos - st[ans] - 1) / 2
					   		+ a[arr[j].pos] + b[arr[j].pos]);
				}
				tmp[k++] = arr[j++];
			}
		}
		while (i <= mid)
			tmp[k++] = arr[i++];
		while (j <= r)
		{
			if (arr[j].type == QUERY && top)
			{
				int l = 0, r = top - 2, ans = top - 1;
				while (l <= r)
				{
					int mid = (l + r) >> 1;
					if (ratio(st[mid], st[mid + 1]) < arr[j].pos)
						r = mid - 1, ans = mid;
					else
						l = mid + 1;
				}
				dp[arr[j].pos] = min(dp[arr[j].pos], 
					dp[st[ans]] + 
					(ll)((a[st[ans]] << 1) + arr[j].pos - st[ans]) * (arr[j].pos - st[ans] - 1) / 2
				   		+ a[arr[j].pos] + b[arr[j].pos]);
			}
			tmp[k++] = arr[j++];
		}
		memcpy(arr + l, tmp + l, sizeof(node[r - l + 1]));
	}
	int work()
	{
		read(n);
		for (int i = 1; i <= n; i++)
			read(a[i]), c[i] = a[i] - i;
		for (int i = 1; i <= n; i++)
			read(b[i]);
		a[++n] = INF;
		c[n] = INF;
		int ans = solve();
		write(ans - 1), putchar(' ');
		memset(dp, INF, sizeof(ll[n + 1]));
		dp[0] = 0;
		for (int i = 1; i <= ans; i++)
		{
			int cnt = 0;
			for (int j = 0; j < v[i - 1].size(); j++)
				if (dp[v[i - 1][j]] < LINF)
					arr[++cnt] = (node){v[i - 1][j], CHANGE};
			for (int j = 0; j < v[i].size(); j++)
				arr[++cnt] = (node){v[i][j], QUERY};
			sort(arr + 1, arr + cnt + 1);
			CDQ(1, cnt);
		}
		write(dp[n] - a[n] - b[n]);
		return 0;
	}
}
int main()
{
	return zyt::work();
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: bzoj[1597][usaco2008 mar]土地购买 斜率优化 这道题是一道经典的斜率优化题目,需要用到单调列的思想。 首先,我们可以将题目中的式子进行变形,得到: f[i] = f[j] + (sum[i] - sum[j] - m) ^ 2 + k 其中,sum[i] 表示前缀和,m 和 k 都是常数。 我们可以将式子中的 sum[i] 和 k 看作常数,那么我们需要优化的就是 (sum[i] - sum[j] - m) ^ 2 这一项。 我们可以将其展开,得到: (sum[i] - sum[j] - m) ^ 2 = sum[i] ^ 2 - 2 * sum[i] * (sum[j] + m) + (sum[j] + m) ^ 2 我们可以将其看作一个二次函数,其中 a = 1,b = -2 * (sum[j] + m),c = (sum[j] + m) ^ 2。 我们可以发现,当 j < k 时,如果 f[j] + a * sum[j] + b * sum[j] <= f[k] + a * sum[k] + b * sum[k],那么 j 就不可能是最优决策点,因为 k 比 j 更优。 因此,我们可以用单调列来维护决策点。具体来说,我们可以维护一个单调递增的列 q,其中 q[i] 表示第 i 个决策点的下标。每次加入一个新的决策点 i 时,我们可以将列尾部的决策点 j 弹出,直到列为空或者 f[j] + a * sum[j] + b * sum[j] <= f[i] + a * sum[i] + b * sum[i]。然后,我们将 i 加入列尾部。 最后,列头部的决策点就是最优决策点。我们可以用类似于双指针的方法来维护列头部的决策点是否在当前区间内,如果不在,就弹出列头部。 时间复杂度为 O(n)。 ### 回答2: 这道题目属于斜率优化的经典题目,难度较高,需要掌握一定的数学知识。 首先,我们可以将题目中的“最大利润”转化为“最小成本”,这样问题就变成了找到一个方案,使得购买土地的成本最小。 接着,我们考虑如何用斜率优化来解决这个问题。我们可以定义一个函数f(i),表示前i块土地的最小成本。 显然,f(1)=0,因为不需要购买任何土地。 对于f(i),它可以由f(j)+b(i)×a(j+1)得到,其中j<i,a(j+1)表示第j+1块土地的面积,b(i)表示第i块土地的价格。这个式子的含义是,我们现在要购买第i块土地,那么前面的土地(即前j块)就都要买,所以f(j)表示前j块土地的最小成本,b(i)×a(j+1)表示购买第i块土地的成本。 那么,我们可以得到递推公式: f(i)=min{f(j)+b(i)×a(j+1)},其中j<i。 这个公式看起来很简单,但是要注意的是,当b(i)×a(j+1)的斜率相同时,我们需要取其中面积较小的土地,因为它的价格更低。因此,我们需要对斜率进行排序,并在递推中用单调列维护斜率相等的情况下面积最小的土地。 最终,f(n)就是题目所求的最小成本。 总之,这道题目需要深入理解斜率优化算法的原理和实现方式,并且需要注意细节处理,如果能够顺利地解决这个问题,那么对于斜率优化算法的掌握程度就有了很大的提升。 ### 回答3: 土地购买问题可以采用斜率优化算法来解决。这个问题可以转化为一个单调列的问题。 首先,我们需要对土地价格按照边长从小到大排序。然后,对于每块土地,我们需要求出它的贡献。设 $f_i$ 表示前 $i$ 块土地连续的最小代价。 设当前处理到第 $i$ 块土地,已经求出了前 $j$ 块土地的最小代价 $f_j$。那么我们可以得到下面这个式子: $$ f_i=\min\limits_{j=1}^{i-1}\{f_j+(S_i-S_j)^2+P\} $$ 式子中,$S_i$ 表示前 $i$ 块土地的边长和,$P$ 表示额外购买土地的代价。首先,不考虑额外购买土地,我们可以使用动态规划来求出 $f_i$。但是,考虑到额外购买土地的代价 $P$ 是一个固定值,我们可以考虑将它与某一块土地的代价合并起来,这样就可以使用斜率优化技术来优化动态规划算法。 我们定义一个决策点 $j$,表示我们当前要处理第 $i$ 块土地时,已经处理过 $j$ 块土地,并将第 $j+1$ 块土地到第 $i$ 块土地购买,所需的最小代价。我们假设 $S_i>S_j$,则可以得到下面这个式子: $$ f_i=\min\limits_{j=1}^{i-1}\{f_j+(S_i-S_j)^2+P\} $$ 将它整理成斜率截距式可以得到: $$ y=kx+b $$ 其中 $k=(S_j)^2-2S_iS_j$,$b=f_j+(S_i)^2+P-S_j^2$,$x=S_j$,$y=f_j+(S_j-S_i)^2-S_j^2$。我们发现 $k$ 是一个单调递减的函数,因此我们可以使用一个单调列来维护所有可能成为决策点的点。对于每个点,我们计算函数 $y$ 的值并将它们加入列,然后取头元素的值作为 $f_i$。 综上所述,我们可以使用斜率优化技术来解决土地购买问题,时间复杂度为 $O(n)$。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值