1、二叉排序树(BST)
左子树上所有结点的值均小于它的根结点的值;右子树上所有结点的值均大于它的根结点的值;
2、平衡二叉树(AVL)
如上图,都是BST树,但是针对右图的查询,时间复杂度会从O(logN)退化到O(N),所以就引出了平衡二叉树;平衡二叉树是在BST基础上引出的,满足条件是:每个节点左右子树高度差的绝对值不能超过1。其实吧,AVL树的定义不一定非得是BST树,只要满足左右高度不超过1借口,但是墨守成规的AVL是建立在BST树之上的。
①AVL树的插入(所有的旋转都是在最小不平衡节点的基础上进行的)
LL型、RR型、LR型、RL型
左左:节点插入在最小不平衡节点的左子树的左子树上。
左右:节点插入在最小不平衡节点的左子树的右子树上。
右右:节点插入在最小不平衡树的右子树的右子树上。
右左:节点插入在最小不平衡树的右子树的左子树上。
所谓的旋转,左旋就是把右节点变为父亲,右旋就是把左节点变为父亲,LL和RR都是按照K2进行旋转的,LR和RL都是先按照K1进行旋转,然后按照K2进行旋转。
总结:平衡二叉树,首先需要找到最小的不平衡子树,然后判断是哪种类型的旋转。
参考资料
https://www.cnblogs.com/PerkinsZhu/p/5824015.html
https://blog.csdn.net/yanerhao/article/details/61198487
3、红黑色(RBT)
历史上AVL树流行的另一个版本是红黑树RBT。对红黑树的操作在最坏情况下花费O(log n)时间,而且相对于普通AVL树可能更容易实现。相比较AVL,AVL是严格平衡树,故在增加或者删除节点时,调整所需旋转较多;RBT是平衡与操作复杂性上做了tradeoff,是弱平衡,用非严格的平衡换取增删节点时操作的简单。故当操作主要集中在搜索而非增删时应采用AVL;如果增删操作更多,为了提高可操作性应该选择RBT。
①每个节点,不是黑色就是红色。
②根节点是黑色。
③每个叶子节点(NULL)是黑色。 [注意:这里叶子节点,是指为空(NULL)的叶子节点!]
④如果一个节点是红色的,则它的子节点必须是黑色的。
⑤从任意一个节点到叶子节点所有路径上包含相同数目的黑节点。
1)、红黑树的插入原则:(插入的结点,预处理都是红色)
①被插入的节点是根节点,直接把此节点涂为黑色。
②被插入的节点的父节点是黑色,什么也不需要做。节点被插入后,仍然是红黑树。
③被插入的节点的父节点是红色,有三种case
2)、红黑树的删除原则
①首先引入一个概念,删除一个叶子节点直接删除即可,删除一个非叶子节点,那么用该节点左子树的最大值或者右子树的最小值去替换。替换的这个节点一定是个叶子节点或者只有一个子树的结点,因为在AVL树中,找左子树的最大值肯定一直递归找左子树,找到没有左子树为止;找右子树的最小值肯定一直递归找右子树,找到没有右子树为止。
②删除原则,删除节点y,若y是红色,不改变红黑树的性质。若y是黑色,在y的子树中找到x来进行替换。
若x是红色,直接改变颜色即可;
若x是黑色,且为根,直接结束;
若x是黑色,且不为根,有4种case,直到满足前两种情况结束。
参考资料:
http://www.cnblogs.com/skywang12345/p/3245399.html
https://www.cnblogs.com/CarpenterLee/p/5503882.html
https://www.cnblogs.com/CarpenterLee/p/5525688.html
4、B-树、B+树(B-树就是B树)
①B-树,即B树,多叉平衡查找树,它在文件系统中很有用。B-树的阶就是该树中结点中最多孩子的个数。通常用m表示,结点中元素的范围[ceil(m/2)-1,m-1],若m=3,则取值范围[1,2]。
②B-树的插入(相对比较简单,注意分裂操作即可)
③B-树的删除:
第一步:删除的结点是叶子节点(删除后的结点,元素个数必须满足[ceil(m/2)-1,m-1],如果满足直接删除,如果不满足,需要找兄弟借,兄弟没有就合并父左右)
第二步:删除的结点是非叶子节点(交换左孩子的最大值或右孩子的最小值,然后按照第一步进行操作)
总结:第一步和第二步的区别,其实就是把非叶子节点转换到叶子节点。然后叶子节点的删除有三种情况。(直接删除,兄弟借,合并)
参考资料:
https://blog.csdn.net/zwz2011303359/article/details/63262541