--01背包问题
有 N 件物品和一个容量是 V 的背包。每件物品只能使用一次。
第 i 件物品的体积是 vi ,价值是 wi 。
求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。
输入格式
第一行两个整数,N,V,用空格隔开,分别表示物品数量和背包容积。
接下来有 N 行,每行两个整数 vi,wi,用空格隔开,分别表示第 i 件物品的体积和价值。
输出格式
输出一个整数,表示最大价值。
数据范围
0<N,V≤1000
0<vi,wi≤1000
输入样例
4 5
1 2
2 4
3 4
4 5
输出样例:
8
思路解析:
1. 先输入N,V;
2. 循环输入第 i 个物品的体积v[ i ]、价值w[ i ];
3. 以剩余容量为循环判断条件:
1)若 j < v[ i ],说明当前背包容量不够,前 i 件物品的最大价值就是前 i +1件物品的总价值,即
f[i][j]=f[i-1][j]; //二维数组
dp[j]=dp[j]; //转化为一维
2)若 j >=v[ i ],说明背包容量够,前 i 个物品最优解:
f[i][j]=f[i-1][j-v[i]]+w[i]; //选第i件
dp[j]=dp[j-v[i]]+w[i];
f[i][j]=f[i-1][j]; //不选第i件
dp[j]=dp[j];
4. 比较选与不选的总价值大小,并输出。
完整代码如下:
#include<stdio.h>
int max(const int a,const int b)
{
return (a>b ? a:b);
}
int main(){
int N,V;
int v[1000],w[1000],dp[1000]={0};//定义数组dp时初始化
scanf("%d %d",&N,&V);
int i,j;
for(i=1;i<=N;i++)
{
scanf("%d %d",&v[i],&w[i]);
for(j=V;j>=v[i];j--){ //j表示剩余容量
dp[j]=max(dp[j],dp[j-v[i]]+w[i]);//判断是否应该拿下
}
}
printf("%d",dp[V]);
return 0;
}
--完全背包问题
有 N 种物品和一个容量是 V 的背包,每种物品都有无限件可用。
第 i 种物品的体积是 vi,价值是 wi 。
求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。
输入格式:
第一行两个整数 N,V,用空格隔开,分别表示物品种数和背包容积。
接下来有 N 行,每行两个整数 vi,wi,用空格隔开,分别表示第 i 种物品的体积和价值。
输出格式:
输出一个整数,表示最大价值。
数据范围:
0<N,V≤1000
0<vi,wi≤1000
输入样例:
4 5
1 2
2 4
3 4
4 5
输出样例:
10
代码如下:
#include<stdio.h>
int max(const int a,const int b)
{
return (a>b ? a:b);
}
int dp[1000]={0};
int main(){
int N,V;
scanf("%d %d",&N,&V);
int v[1000],w[1000];
int i,j;
for(i=1;i<=N;i++){
scanf("%d %d",&v[i],&w[i]);
}
for(i=1;i<=N;i++){
for(j=v[i];j<=V;j++){
dp[j]=max(dp[j],dp[j-v[i]]+w[i]);
}
}
printf("%d",dp[V]);
return 0;
}
注意:
对于二维数组实现的01背包问题,第二层循环(遍历背包容量)可以正序,也可以逆序。
一维数组的01背包问题,第二层循环必须逆序。
对于完全背包问题,无论二维还是一维数组实现,都必须正序。
--多重背包问题
有 N 种物品和一个容量是 V 的背包。
第 i 种物品最多有 si 件,每件体积是 vi,价值是 wi。
求解将哪些物品装入背包,可使物品体积总和不超过背包容量,且价值总和最大。
输出最大价值。
输入格式:
第一行两个整数,N,V,用空格隔开,分别表示物品种数和背包容积。
接下来有 N 行,每行三个整数 vi,wi,si,用空格隔开,分别表示第 i 种物品的体积、价值和数量。
输出格式:
输出一个整数,表示最大价值。
数据范围:
0<N,V≤100
0<vi,wi,si≤100
输入样例:
4 5
1 2 3
2 4 1
3 4 3
4 5 2
输出样例:
10
代码如下:
#include<stdio.h>
int max(const int a,const int b){
return (a>b ? a:b);
}
int main()
{
int N,V;
scanf("%d %d",&N,&V);
int i,j,k;
int v[100],w[100],s[100],dp[1000]={0};
for(i=1;i<=N;i++){
scanf("%d %d %d",&v[i],&w[i],&s[i]);
}
for(i=1;i<=N;i++){
for(j=V;j>=1;j--){
for(k=1;k<=s[i]&&j>=k*v[i];k++){
dp[j]=max(dp[j],dp[j-k*v[i]]+k*w[i]);
}
}
}
printf("%d",dp[V]);
return 0;
}