C语言-背包问题

 --01背包问题

有 N 件物品和一个容量是 V 的背包。每件物品只能使用一次。

第 i 件物品的体积是 vi ,价值是 wi 。

求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。

输入格式

第一行两个整数,N,V,用空格隔开,分别表示物品数量和背包容积。

接下来有 N 行,每行两个整数 vi,wi,用空格隔开,分别表示第 i 件物品的体积和价值。

输出格式

输出一个整数,表示最大价值。

数据范围

0<N,V≤1000
0<vi,wi≤1000

输入样例

4 5
1 2
2 4
3 4
4 5

输出样例:

8

思路解析:

1. 先输入N,V;

2. 循环输入第 i 个物品的体积v[ i ]、价值w[ i ]; 

3. 以剩余容量为循环判断条件:

1)若 j < v[ i ],说明当前背包容量不够,前 i 件物品的最大价值就是前 i +1件物品的总价值,即

f[i][j]=f[i-1][j]; //二维数组
dp[j]=dp[j];       //转化为一维

2)若 j >=v[ i ],说明背包容量够,前 i 个物品最优解: 

f[i][j]=f[i-1][j-v[i]]+w[i];   //选第i件
dp[j]=dp[j-v[i]]+w[i];

f[i][j]=f[i-1][j];             //不选第i件
dp[j]=dp[j];

 4. 比较选与不选的总价值大小,并输出。

完整代码如下: 

#include<stdio.h>
int max(const int a,const int b)
{
    return (a>b ? a:b);
}
int main(){
    int N,V;
    int v[1000],w[1000],dp[1000]={0};//定义数组dp时初始化 
    scanf("%d %d",&N,&V);
    int i,j;
    for(i=1;i<=N;i++)
    {
        scanf("%d %d",&v[i],&w[i]);
        for(j=V;j>=v[i];j--){  //j表示剩余容量
            dp[j]=max(dp[j],dp[j-v[i]]+w[i]);//判断是否应该拿下
        }
    }
    printf("%d",dp[V]);
    return 0;
}

--完全背包问题

有 N 种物品和一个容量是 V 的背包,每种物品都有无限件可用。

第 i 种物品的体积是 vi,价值是 wi 。

求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。

输入格式:

第一行两个整数 N,V,用空格隔开,分别表示物品种数和背包容积。

接下来有 N 行,每行两个整数 vi,wi,用空格隔开,分别表示第 i 种物品的体积和价值。

输出格式:

输出一个整数,表示最大价值。

数据范围:

0<N,V≤1000
0<vi,wi≤1000

输入样例:

4 5
1 2
2 4
3 4
4 5

输出样例:

10

代码如下: 

#include<stdio.h>
int max(const int a,const int b)
{
    return (a>b ? a:b);
}
int dp[1000]={0};
int main(){
    int N,V;
    scanf("%d %d",&N,&V);
    int v[1000],w[1000];
    int i,j;
    for(i=1;i<=N;i++){
        scanf("%d %d",&v[i],&w[i]);
    }
    for(i=1;i<=N;i++){
        for(j=v[i];j<=V;j++){
        	dp[j]=max(dp[j],dp[j-v[i]]+w[i]);  
        }
    }
    printf("%d",dp[V]);
    return 0;
}

注意:

对于二维数组实现的01背包问题,第二层循环(遍历背包容量)可以正序,也可以逆序。
        一维数组的01背包问题,第二层循环必须逆序
对于完全背包问题,无论二维还是一维数组实现,都必须正序。 

--多重背包问题

有 N 种物品和一个容量是 V 的背包。

第 i 种物品最多有 si 件,每件体积是 vi,价值是 wi。

求解将哪些物品装入背包,可使物品体积总和不超过背包容量,且价值总和最大。
输出最大价值。

输入格式:

第一行两个整数,N,V,用空格隔开,分别表示物品种数和背包容积。

接下来有 N 行,每行三个整数 vi,wi,si,用空格隔开,分别表示第 i 种物品的体积、价值和数量。

输出格式:

输出一个整数,表示最大价值。

数据范围:

0<N,V≤100
0<vi,wi,si≤100

输入样例:

4 5
1 2 3
2 4 1
3 4 3
4 5 2

输出样例:

10

 代码如下:

#include<stdio.h>
int max(const int a,const int b){
    return (a>b ? a:b);
}
int main()
{
    int N,V;
    scanf("%d %d",&N,&V);
    int i,j,k;
    int v[100],w[100],s[100],dp[1000]={0};
    for(i=1;i<=N;i++){
        scanf("%d %d %d",&v[i],&w[i],&s[i]);
    }
    for(i=1;i<=N;i++){
        for(j=V;j>=1;j--){
            for(k=1;k<=s[i]&&j>=k*v[i];k++){
                dp[j]=max(dp[j],dp[j-k*v[i]]+k*w[i]);
            }
        }
    }
    printf("%d",dp[V]);
    return 0;
}

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值