自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(86)
  • 收藏
  • 关注

转载 Vibe Ops:打造AI驱动运维新模式,彻底改变开发人员生产力

作者观点我不是很认可,Vibe Coding是建立在一套规则体系之上,核心是应对需求,而Ops不是,它面对的环境是不规则的/非标准的,并且运维要应对场景很多。如文中所讲,Vibe Ops是针对开发的,一旦把生产环境去掉,则Vibe Ops要面对的场景非常简单,自动化足矣。总结:本文介绍了 Vibe Ops 的概念,它是 Andrej Karpathy 的 Vibe Coding方法的升级版,旨在提升开发者的生产力。,常常迫使开发人员要么切换上下文,要么等待运维团队的响应。

2025-05-13 06:39:17 7

转载 【论文阅读】AI Agent及Agent系统的架构演进

具有语言能力的 Agent智能体通过 LLM将内部记忆和外部环境联系起来,将其建立在现有知识或现实世界观察的基础上,从而解决了这些难题。从纯粹的数字环境到物理环境的转变代表着向前迈出的重要一步,因为这将要求 AI 智能体整合感知数据、物理行动和情境感知决策,进一步增强其能力和应用。AI 智能体的发展已经从最初的简陋发展到结合内部控制机制与外部环境基础和认知输入的系统,从而实现了更加复杂和动态的互动。随着 AI 智能体的不断发展,它们在数字环境中的存在将超越静态交互,为更复杂的系统奠定基础。

2025-05-09 07:42:31 12 1

转载 【看图说话】我的运维韧性管理体系思考——构建系统/应用的动态防御与自适应能力

首先说一下这张图的核心逻辑,提出运维【韧性管理】,然后从多个(实际/虚拟)角色出发,有哪些维度会影响【系统/应用】的鲁棒性,因此运维必须要强化关注这些维度。2、以系统/应用为中心支点——所有的软硬件建设/组织建设/流程建设...最终都是为了确保系统/应用的持续运行,所有的管理逻辑最终都要指向它。3、以角色为核心,推导影响路径,从而设计手段来对抗其风险,从多个维度描述系统/应用韧性的影响点/提升点,360度全面观测和提升。1、提出一个全新的理念——韧性管理。*稳定性管理与韧性管理的区别。

2025-05-08 07:47:43 9

转载 混沌工程的核心原則

关注系统的可测量输出,而不是系统的内部属性。不可预测的结果,再加上影响生产环境的罕见但具有破坏性的现实事件,使得这些分布式系统本质上是混乱的。基于经验和系统的方法可以解决大规模分布式系统中的混乱问题,并建立对这些系统承受现实条件能力的信心。混沌工程(Chaos Engineering)是一门对(生产)系统进行实验的学科,目的是建立对系统在生产中承受动荡和破坏的信心。我们需要一种方法来管理这些系统固有的混乱,利用不断提高的灵活性和速度,并对我们的生产部署充满信心,尽管它们代表着复杂性。

2025-05-07 06:43:09 15

转载 利用高质量数据对AI应用评估

驱动 AI 应用的 LLM 是非确定性的,当被问及 10 次完全相同的问题时,可能会给出 10 个不同的答案。严格的评估和优化可减轻 LLMs 固有的不可预测性,确保 AI 应用程序的一致性和可靠性,从而可以放心地部署到生产中。评估的最佳输入数据是从 “真实世界 ”的交互中收集的,但并不是总能获得这样的数据。与收集真实数据进行评估时的情况一样,用于评估的合成输入数据也必须反映出 AI 应用程序预计要处理的不同类型的交互。使用大语言模型 LLM 生成数据时,必须使用有效的提示,通常包含输出数据的建议示例。

2025-05-06 07:15:06 12

转载 大模型训练中的过拟合Overfitting概念

大模型训练中的过拟合(Overfitting)是指模型在训练数据上表现优异,但在未见过的测试数据或新数据上泛化能力显著下降的现象。这种现象通常由模型复杂度过高、数据量不足或训练策略不当引起,导致模型过度学习了训练数据中的噪声和细节,而非数据的内在规律。- 混合训练数据:在领域微调时,混合通用数据与垂直领域数据,避免模型遗忘通用知识(如LLM微调中的模型遗忘问题)。- 模型复杂度过高:大模型参数量庞大(如千亿级参数),自由度极高,容易记忆训练数据的每个细节而非通用模式。

2025-05-02 08:24:15 16

转载 大模型训练中的欠拟合(Underfitting)概念

与过拟合不同,欠拟合的核心矛盾在于“模型不够强”,而非“模型太强”。大模型训练中的欠拟合(Underfitting)是指模型在训练数据和测试数据上均表现不佳,无法有效捕捉数据中的复杂规律和特征的现象。这种现象通常由模型复杂度过低、数据特征不足或训练策略不当导致,使得模型无法充分学习数据中的潜在模式。- 更换模型类型:用复杂模型替代简单模型,如用决策树替代线性回归,或用Transformer替代传统RNN。3. 领域适配问题:在垂直领域(如医疗、法律)中,通用预训练模型可能因特征差异而欠拟合,需针对性微调。

2025-05-02 08:24:15 17

转载 大模型训练中的彩票假设:原理、应用与前沿

随着Composer等工具库的成熟,以及量子计算等新技术的加持,该理论有望进一步突破当前AI训练的算力瓶颈,推动轻量化、泛化性更强的下一代大模型发展。在随机初始化的密集网络中,存在特定权重组合构成的子网络,这些权重在训练初期即具备较强的表征能力。在预训练模型中发现通用子网络(Universal Subnetwork),例如ImageNet预训练的ResNet-50中,60%稀疏度的子网络可迁移至检测、分割任务且性能无损。【备注】在阅读大模型知识的过程中,看到不错的,就以笔记的方式快速分享一下。

2025-04-30 09:11:01 18

转载 Qwen3模型名称中的A*B是什么意思?

Qwen的MoE模型(如Qwen3-235B-A22B)由多个专家网络组成,每个输入仅激活其中的一部分专家(例如激活8个专家中的2个)。激活参数即指这些被选中的专家网络的参数。:例如,Qwen3-30B-A3B总参数为300亿,但每次推理仅激活30亿参数(占总参数的10%),却能实现与更大稠密模型相当的性能。是混合专家模型(MoE)架构中的核心概念,指在每次推理过程中实际被激活并参与计算的参数子集。:总参数300亿,激活30亿(10%),性能超过Qwen2.5的32B模型。激活参数的定义与作用。

2025-04-29 08:40:02 9

转载 狼来了?面对AI Agent的来势汹汹,传统MIS软件该如何应对,未来两者该如何定位?

在前面提到,组织很多角色被AI辅助,这点势必带来人的工作模式变化,比如说当下的编程和设计领域,我接触一个时尚企业,就通过大模型生成大量的鞋服设计图,人机协作新模式,质量和效率大大提升,成本还是降低的;传统MIS还是要把脏活累活干好,把复杂环境对接好,把数据规范好,把流程跑顺,而“大脑”则利用MIS积累的数据,转化经验,从而不断提升决策能力,加快组织的运行效率。它是基于组织的角色和场景需求而来,辅助复杂的软件工程,实现一个完整的软件系统,传统MIS软件是基于组织的价值链过程,完成各类角色下场景能力信息化。

2025-04-27 07:59:29 10

转载 运维必知必会AI大模型知识之(八):One-hot编码和稀疏矩阵

将字符串转换为唯一的编号后,您需要进一步处理数据,以便以有助于模型学习值之间有意义的关系的方式表示数据。如果将分类特征数据保留为编入索引的整数并加载到模型中,模型会将编入索引的值视为连续浮点数。请注意,稀疏表示法所占用的内存远远少于八元素的 one-hot 向量。的分类特征来预测汽车的价格。该模型会为特征向量的每个元素学习单独的权重。每个类别都由一个包含 N 个元素的向量(数组)表示,其中 N 是类别的数量。使用词汇表编码时,模型会将每个可能的分类值视为一个。在训练过程中,模型会为每个类别学习不同的权重。

2025-04-26 10:10:20 28

转载 解读 Agent2Agent 协议--它是什么、它的机制以及为什么它的势头越来越猛。

虽然在 “谷歌云未来2025 ”大会上发布的A2A为这些Agent的协作提供了开放的标准 “语言”,但实际构建强大的、可投入生产的Agent和复杂的多Agent系统需要专用的、功能强大的工具。从我们的角度展望未来,协议的开源性是实现这一未来的关键因素。虽然您可能会在大型应用程序中以不同的方式集成这种简单的交互,但将它们作为不同的工具来创建是了解核心机制的极佳方式:定义一个 Python 函数,编写一个清晰的文档说明其目的和参数(这对 LLM 至关重要),然后将其附加到 Agent 上。

2025-04-23 12:09:14 73

转载 打造更好的 AI 应用程序:评估至关重要!

或者,更糟糕的是,客户满意而归,却不知道自己获得了不准确的信息。使用更昂贵、更广泛的模型或更长的提示符和 RAG 内容可能会提高准确性,减少出现幻觉的可能性,但准确性的提高是有代价的。,提供了一种全面的评估方法,既可以进行严格的 if-then-else 式条件评估,也可以对 AI 生成的输出进行更细致入微的定性分析。为了提高一个维度的性能,同时需要牺牲另一个维度的性能(例如,更准确的响应可能会导致更大的延迟,而不太准确的响应可能需要更少的时间来生成),可能需要进行权衡。了解可接受的延迟时间非常重要。

2025-04-21 06:20:39 49

转载 【深度好文】什么是AI Agent智能体?主要概念、优势和风险

在医疗保健和金融等行业,数据的不当处理可能会导致严重后果,因此强大的安全性和访问控制至关重要。Agent智能体带来了巨大的力量和潜力,但使这些系统如此有效的自主性和适应性也带来了风险,需要警惕的监控和周到的管理,以确保负责任地部署和使用它们。Agent可以检索和分析数据,与外部工具协调,并管理多个步骤中的依赖关系--从本质上讲,它是一个独立的决策系统,而不是一个被动的对话界面。例如,协助研究团队的 AI 智能体可能会回忆起过去的查询,并根据以前的互动完善未来的搜索,从而随着时间的推移提高效率和个性化程度。

2025-04-18 06:49:09 53

转载 运维必知必会AI大模型知识之(七):MoE混合专家模型

混合专家模型(MoE)是一种通过组合多个“专家”网络来提升模型容量和计算效率的架构,广泛应用于大规模深度学习任务,如自然语言处理和推荐系统。集成学习独立训练多个模型并投票,而MoE的专家联合训练,通过门控动态组合,计算时仅激活部分专家。在模型推理或训练过程中,仅激活与当前输入相关的部分参数(即“专家”),而大部分参数保持非活跃状态。实验显示,在相同计算预算下,模型规模可扩展至1.6万亿参数,性能优于稠密模型。仅激活部分专家,计算量与激活的专家数成正比(如k=1时计算量接近基线模型)。

2025-04-16 08:01:48 43

转载 混沌工程下的故障模式库建设启示

混沌测试的故障库(Failure Library)是混沌工程(Chaos Engineering)的核心工具,用于系统性梳理、分类和管理可能影响系统稳定性的故障场景。故障库的梳理需结合系统架构、业务场景和历史故障数据,目标是覆盖真实环境中可能发生的风险,确保测试的全面性和有效性。标注核心服务(如支付、数据库)、第三方依赖(如短信网关、云存储)。结合电商大促场景,梳理高并发下的典型故障(如库存服务雪崩)。历史故障分类表(如硬件故障占30%、网络问题占40%)。

2025-04-15 06:37:47 49

转载 运维必知必会AI大模型知识之(六):多头注意力机制

它通过并行化多组自注意力操作,显著提升了模型对复杂语义关系的建模能力,成为现代大语言模型(如GPT、BERT、LLaMA等)的基础模块。,赋予了大模型捕捉复杂上下文依赖的能力,成为现代AI技术的基石。将自注意力拆分为多个独立的“注意力头”(Heads),每个头在不同的子空间(通过参数矩阵投影)学习不同的关联模式。类似人类同时用多视角分析问题(例如一个头关注语法,另一个头关注语义,第三个头关注指代关系)。头数(h)可调:常见配置为8-64头,大模型(如GPT-3)可能使用96头。

2025-04-14 06:58:58 80

转载 人工智能的“斯普特尼克时刻”

在人工智能领域,“斯普特尼克时刻”被用来描述某一国家、企业或技术突破突然引发全球警觉,促使其他国家或竞争对手加速追赶、加大投入,甚至引发技术竞赛的关键节点。:传统观点认为模型性能与参数量正相关,而DeepSeek通过架构创新(如稀疏化专家混合)证明“小模型也能高效强大”,可能推动全球AI研发从“拼算力”转向“拼算法优化”。,则更强调技术竞争的国际格局变化,与此同时,是否意味着人工智能的技术奇点会出现,那将是人类文明的转折点。诞生后,人类将无法理解其决策逻辑(类似“人类不理解蚂蚁的社会”)。

2025-04-12 08:59:48 139

转载 FMEA故障分析对运维故障根因分析的启示

FMEA(失效模式与影响分析,Failure Mode and Effects Analysis)作为一种系统化的风险预测与预防方法,对运维故障根因分析(RCA, Root Cause Analysis)具有重要启示。通过工具化(如自动化RPN计算)和文化建设(跨团队协作),可显著提升运维成熟度。微前言:这是一篇跨领域知识文章,真所谓“他山之石,可以攻玉”,了解一下,会对我们运维设计应急体系和根因分析都有好处。建立历史故障的失效模式库(如数据库主从延迟、缓存穿透),快速匹配新故障。

2025-04-10 23:08:09 51

转载 运维必知必会AI大模型知识之五:RAG

RAG 的核心可以理解为“检索+生成”。* 与预训练对比:RAG 成本较低,且可以利用外部知识源来获取更广泛、更准确的信息,而预训练成本较高,需要较长时间和计算资源。* 与语义搜索对比:语义搜索是 RAG 的一个元素,RAG 在检索向量数据库的步骤中利用语义搜索来生成符合语境且最新的结果。* 与微调对比:RAG 可以从单个文档中检索信息,所需的计算资源较少,且可以有效减少幻觉,而微调需要大量数据和计算资源。3. 生成:将检索到的相关知识融入 Prompt,LLM 参考当前问题和相关知识,生成相应的答案。

2025-04-09 07:19:51 37

转载 AIOps,LLM模式下的风险评估比收益更重要

AIOps 工具服务商肯定能很好地让客户理解工具带来的好处,但现在,更要从另外一个角度考虑问题——了解AI工具面临的风险,从而重点评估工具的生产实施。我将为 AIOps 工具供应商列出一些简单的指导方针,如果您遵循这些指导方针,您就会引起我的注意。如果某个工具针对事件的根本原因给出的建议或措施将我引向了错误的方向,该怎么办?我可能会浪费宝贵的时间寻找死路,或者该工具可能会缩小我的关注范围,造成偏见,让我更难找到更有用的方向。期望完美是不合理的,我们不需要对 AI的SRE工具进行同行评审的科学研究。

2025-04-07 07:35:11 19

转载 运维必知必会AI大模型知识之四:损失函数

损失函数是机器学习模型训练过程中的关键部分,理解其原理对于成功训练和优化模型至关重要。选择合适的损失函数、计算梯度、处理数值稳定性问题以及使用优化算法是提高模型性能的重要步骤。注:实际训练中常联合多种损失(如预训练+对比损失),同时结合分布式训练的梯度聚合策略(如ZeRO、Pipeline并行)。例如:预测下一个词时,模型需捕捉到"苹果"后面更可能接"公司"(实体关联)而非"月亮"(常识错误)。大语言模型(LLM)的损失函数是其训练和优化的核心驱动力,不同阶段的损失函数承担着。

2025-04-06 08:28:34 53

转载 掌握机器学习的 7 个 GitHub 项目

每个项目都能教给你一些关于模型服务、测试、自动化和部署的新知识。在完成本项目后,您将了解如何将您的 ML 模型公开为 REST API,这是在实际应用程序中部署 ML 解决方案的基本技能。您将学习如何使用 GitHub Actions 自动执行 ML 模型的训练、评估、版本控制和部署。学习模型服务MaaS、CI/CD、ML 流水线、模型部署、本地 AI 和 Docker,以简化 ML 工作流程、自动化流水线并有效部署可扩展、可移植的 AI 解决方案。涵盖的关键技能:FastAPI、模型推理、API 开发。

2025-04-05 07:26:52 27

转载 值得关注!全球Top100 生成式AI消费者应用,包括灵感编程(第四版)

Top100 新一代人工智能消费者应用”的第四版,我们每两年对 Top 50 人工智能Web产品(根据 Similarweb 的每月独立访问量)和 Top 50 人工智能APP应用(根据 Sensor Tower 的每月活跃用户量)进行一次排名。Bolt报告称,在头两个月内,其年收入就达到了2000 万美元,注册用户达到 200 万,而Lovable报告称,在头三个月内,其年收入增长至1700 万美元。除了这些排名之外,我们的分析还揭示了人工智能在哪些领域正在获得关注以及新兴的消费者技术行为的迹象。

2025-04-03 07:16:48 23

转载 “ Think”工具:让 Claude 在复杂的工具使用情况下停下来思考

当 Claude 需要调用复杂工具、在长链工具调用中仔细分析工具输出、使用详细指南导航策略繁重的环境或做出顺序决策(其中每个步骤都建立在前一步的基础上并且错误代价高昂)时,“思考”工具更适合。这使得“思考”工具更适合于 Claude 无法从用户查询中单独形成响应所需的所有信息,以及需要处理外部信息(例如工具调用结果中的信息)的情况。实现针对您的领域定制的“思考”工具。通过“思考”工具,我们赋予 Claude 能力,使其能够添加额外的思考步骤(拥有自己指定的空间),作为获得最终答案的一部分。

2025-04-02 07:40:26 37

转载 运维必知必会AI大模型知识之三:QKV矩阵

信息检索的数学隐喻:Q(Query)、K(Key)、V(Value)矩阵在Transformer的自注意力机制中,模拟了数据库查询的过程,通过矩阵运算实现上下文信息的动态加权聚合。* Multi-Head Attention:同一层有多个独立的Attention结构(头),使模型从不同的角度去理解输入序列,以更加全面的提取不同类型的特征。分别映射相关性键和内容值,通过计算Q与K的相似性(注意力权重),再对V加权聚合,动态捕捉输入序列中长距离的依赖关系,提升上下文理解能力。

2025-04-01 06:46:42 86

转载 OpenAI的人工智能发展五阶段

我们需要在推动技术进步的同时,认真思考如何确保这些强大的AI系统安全可控、符合人类价值观,并能够为广大人类社会带来福祉。从当前的聊天机器人阶段到最终的组织级AI,每一步都代表着AI能力的质的飞跃。这一框架的建立旨在提高公众对AI发展过程及其安全含义的理解,并为未来人工智能的发展提供清晰的路线图。这一阶段的AI不仅能执行任务,还能提出创新性解决方案,甚至可能推动科学和技术领域的突破性进展。尽管专家对实现AGI的时间框架存在不同看法,但毫无疑问的是,AI技术正在以前所未有的速度发展。

2025-03-31 07:31:09 515

转载 可下载!《证券基金运维自动化能力成熟度规范》解读

"《规范》通过管理和技术手段,有效控制和降低运维自动化带来的潜在风险,增强对运维工具的自主掌控能力,进而推动和提升行业运维自动化的建设水平。某基金公司通过引入智能运维平台,实现了对关键业务指标的实时监控,一旦发生异常,系统能够自动告警并触发相应的应急预案,大大缩短了故障处理时间。券商基金行业运维自动化规范与国家通用标准不同的是,第一、行业化的特殊要求,如业务、监管、安全等综合考虑。某证券公司通过实施精细化的权限管理,限定了不同运维人员的操作范围,有效防止了越权操作和误操作,降低了安全风险。

2025-03-30 06:54:27 21

转载 AI大模型知识之二:Embedding/Word2Vec

词向量 Word2Vec 是一种流行的自然语言处理 (NLP) 工具,它通过将词汇表中的每个单词转换成一个独特的高维空间向量,使得这些词向量能够在数学上表示它们的语义关系。“Embedding”在字面上的翻译是“嵌入”,但在机器学习和自然语言处理的上下文中,我们更倾向于将其理解为一种“向量化”或“向量表示”的技术,这有助于更准确地描述其在这些领域中的应用和作用。* Output Layer:经过 softmax 函数,将输出向量中的每一个元素归一化到 0-1 之间的概率,概率最大的,就是预测的词。

2025-03-29 06:44:36 22

转载 玩转MCP服务,成为运维超级玩家

首先和大家说一下我的体验目的,第一,体验先进工具带来的生产率变化是什么,Cursor订阅了月度会员;关于第一点,我现在基本上都是用Cursor来帮忙读工程代码,效率非常的高,输出质量很高,其次偶尔用它来写写程序,体验编码的快感,特别对于我这个写程序不行的人来说。无论你是构建 AI 驱动的 IDE、改善 chat 交互,还是构建自定义的 AI 工作流,MCP 提供了一种标准化的方式,将 LLM 与它们所需的上下文连接起来。在Cursor的chat模式下,/ui 提示要设计的网站,它能快速生成。

2025-03-28 07:23:38 174

转载 AI大模型知识之一:Token

Tokenization可以帮助模型处理不同的语言、词汇表和格式,降低计算和内存成本,还可以通过影响token的意义和语境来影响所生成文本的质量和多样性¹。* 粒度:Token通常可以被看作是单词的片段,可以包括尾随空格以及子单词,甚至更大的语言单位¹。大型语言模型(LLM)中的“token”是指模型可以理解和生成的最小意义单位,是模型处理文本的基本单元¹。* 数值表示:Token会被赋予数值或标识符,并按序列或向量排列,作为LLM的输入或输出,是模型的语言构件¹。Token对LLM的影响。

2025-03-27 07:51:36 26

转载 AI来了,你确定你准备好了么?

它正以超乎想象的力量,重塑我们的工作方式,提升运维效率,甚至改变运维的价值定位。例如,通过分析用户访问量和服务器负载情况,大模型可以预测未来一段时间内所需的服务器数量,并自动进行扩容或缩容操作,实现弹性伸缩。在接下来的内容里,我将结合自身经验和行业洞察,深入剖析大模型如何赋能运维的各个环节,以及我们运维人应该如何拥抱这场变革,更好地发挥大模型的价值。大模型可以对系统中的各种配置进行一致性检查,例如操作系统配置、应用配置、网络配置等,及时发现配置不一致的情况,避免因配置差异导致的问题。

2025-03-26 06:37:50 18

转载 SRE运维人员的AI革命:跨越三重鸿沟拥抱大模型时代

记住:AI不会淘汰运维人,淘汰你的是会用AI的运维人。:某客户通过AI大模型,自动生成故障处置方案并执行验证,复杂事件平均恢复时间(MTTR)从45分钟压缩至8分钟。:某团队直接将历史告警日志喂给大模型,因缺乏特征工程处理,导致故障预测准确率不足30%,远低于人工研判的75%。理解大模型的“能力-局限”边界(如ChatGPT擅长模式匹配,不擅长精确计算);设计Prompt工程框架,让AI理解“扩容优先级”“故障影响面”等业务语义。处理AI误报(如误判故障等级)、解释黑盒决策(如根因分析的可信度);

2025-03-25 17:09:30 54

转载 【直播预告】信通院、联想、B站、知乎、招商基金的技术大咖齐聚话FinOps

12月26日(明晚7点),优维「UGeek大咖说-FinOps专场」又来了!本场直播也是2023最后一次直播!作为2023年的最后一场,我们肯定给您准备了很多技术干货~关注我们的小伙伴应该知道,今年以来,我们举办了多期FinOps的专题分享,邀请了美图、腾讯、B站、趣丸、知乎等厂商和行业专家,分享他们在FinOps领域的经验。我们也发现越来越多的人对FinOps产生了浓厚的兴趣,而且FinOps的...

2023-12-25 17:25:13 193

转载 探秘XOPS时代:智己汽车数字化运维实践,以场景驱动智能化未来

近年来,XOPS概念层出不穷,落地效果却差强人意。大部分场景还没整明白itil/itsm,却一味追求概念和热捧精益理念。我们常常听到一些负面的声音:“CMDB的价值得不到体现”、“DevOps的效能提升达不到预期”等等。究其原因,总结一点:即工具是技术,只有落到实际工作场景,才能创造我们预期的价值。所以,项目落地的终极目标应当是实现价值,对终端用户、研发/运维人员的日常工作所带来的价值。我们认为,...

2023-11-29 07:30:54 295

转载 直播预告 | 基于数据驱动的成本洞察,趣丸科技的FinOps进阶之路~

趣丸科技一直处于技术探索的前沿,从DataOps的分享到如今的FinOps,持续展现了他们丰富的技术实力和前瞻性。这次的FinOps主题经过精心打磨,从最初的人工维护逐步演进到成本洞察、运营和优化,已经达到了非常成熟的阶段。趣丸科技团队的不懈努力和技术创新让他们一直能找到自己的技术之路。我对本次成本洞察的主题也充满期待。9月26日晚20:00锁定优维线上直播间「FinOps专场」精彩分享不错过!????...

2023-09-21 17:29:33 214

转载 成本控制新思路!从B站的成功经验中寻求成本、质量和效率的平衡!

推荐语:B站是典型的混合云架构,云成本挑战大;业务形态非常丰富,对资源的需求多种多样,如何提升资源效率也是个难题。B站FinOps从人员配置到技术支撑和持续运营,都稳步向前,不仅节省了数亿元成本,也获得了2022年度技术突出贡献奖,更是信通院认证的FinOps云成本优化先锋实践者,对于落地不到2年的项目,B站的FinOps绝对是成功的,值得借鉴!尽管FinOps在国内提及不多,但早在2020年12...

2023-08-28 17:01:50 302

转载 5-7月大更新!EasyOps®全平台34+新特性齐上线~

更多推荐

2023-07-25 08:02:27 128

转载 直播预告 | 被热议的DataOps该如何落地?终于有人能讲明白了,趣丸科技DataOps探索之道!

DataOps的概念自首次被提出至今已有8年,并在2018年被Gartner纳入数据管理技术成熟度曲线。从实施上看,当下DataOps仍处在发展初期,鲜少企业或团队能据此真正沉淀一套方法论或技术产品的体系。不过,随着越来越多的企业开启DataOps实践,相信令人“雾里看花”的DataOps方法体系也会逐渐明朗起来。趣丸科技就是其中的探索者,本期「UGeek大咖说」将邀请趣丸科技的资深架构师林嘉俊做...

2023-07-25 08:02:27 120

转载 明晚8点 | 特邀SRE领域大咖张观石揭秘FinOps体系实践方法

当前,降本增效成为各大互联网公司的重要方向,IT成本则占据了互联网成本的大头。随着IT资源成本花费越来越高,很多公司意识到掌握管控成本和优化成本的重要性。如何有效的降本?如何做好成本的洞察管控?如何掌握资源成本优化的技术方法?明晚20:00,优维联合FinOps产业推进方阵举办的第5期UGeek大咖说,邀请到SRE领域极具声望的大咖,《SRE原理与实践》作者、前虎牙业务运维负责人张观石做客直播间,...

2023-06-28 17:20:01 159

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除