问题描述
lca问题的描述:给定一个二叉树, 找到该树中两个指定节点的最近公共祖先。
百度百科中最近公共祖先的定义为:“对于有根树 T 的两个节点 p、q,最近公共祖先表示为一个节点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。”
对于如下二叉树:
节点0和1的lca为1(一个节点也可以是它自己的祖先)
节点7和6的lca为5(深度最深)
思路与实现
解决思路:其实就是一个树的遍历,需要考虑一个节点左右的返回值,有以下情况:
- left和right都有返回值:当前节点既是LCA,返回当前节点。
- left和right都为空:返回空。
- left有返回值,right为空:返回left。
- right有返回值,left为空:返回right。
代码:
1 2 3 4 5 6 7 8 9 10 11
| class Solution { public: TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) { if (root == nullptr) return nullptr; if (root == p || root == q) return root; TreeNode* left = lowestCommonAncestor(root->left, p, q); TreeNode* right = lowestCommonAncestor(root->right, p, q); if (left != nullptr && right != nullptr) return root; else return left ? left : right; } };
|
参考资料
[1] 印度老哥讲算法