1. 概述
在分布式系统,如果涉及到对相同资源的操作,则会经常涉及到使用分布锁。Redis为单进程单线程模式,通过Redis的命令SETNX,GET可以方便实现分布式锁。
本文先通过redis命令实现分布式锁,介绍实现的主要业务逻辑,并指出其存在的不足之处。然后通过lua脚本实现分布式锁,弥补其存在的不足。最后通过ab对两者实现的锁进行压力测试,比较两者的性能。
2. 使用redis命令实现分布锁
2.1. SETNX
语法: SETNX key value
- 如果key不存在,则存储(key:value)值,返回1
- 如果key已经不存在,则不执行操作,返回0
因为这个命令的性质,多个线程竞争时只有一个线程能修改key的值。利用这一点可以实现锁的互斥功能。
2.2. ILock 和 DistributeLock
定义锁:主要方法有两个lock和unlock
/**
1. 定义锁
2. @author hry
3. */
public interface ILock {
/**
* 获取锁
* @param lock 锁名称
*/
void lock(String lock);
/**
* 释放锁
* @param lock 锁名称
*/
void unlock(String lock);
}
ILock 具体实现类DistributeLock :
- ThreadLocal threadId:通过threadId保存每个线程锁的UUID值,用于区分当前锁是否为自己所有,并且锁的value也存储此值
- lock主要逻辑:通过BoundValueOperations的setIfAbsent设置lockKey值(setIfAbsent其实就是封装了SETNX的命令),如果返回true,则表示已经获取锁;如果返回false,则进入等待
- unlock主要逻辑:通过redisTemplate.delete释放锁。在释放锁前,需要判断当前锁被当前线程所有,如果是,才执行释放锁,否则不执行
- 避免死锁:如果线程A拿到锁后,在执行释放锁前,突然死掉了,则其它线程都无法再次获取锁,从而出现死锁。为了避免死锁,我们获取锁后,需要为锁设置一个有效期,即使锁的拥有者死掉了,此锁也可以被自动释放
- 锁可重入:线程A拿到锁后,如果他再次执行lock,也可以再次拿到锁,而不是出现在等待锁的队列中; 如果当前线程已经获取锁,则再次请求锁则一定可以获取锁,否则会出现自己等待自己释放锁,从而出现死锁
详细的实现见代码:
/**
* 通过redis实现分布锁
* @author hry
*
*/
public class DistributeLock implements ILock {
private static final Logger logger = LoggerFactory.getLogger(DistributeLock.class);
private static final int LOCK_MAX_EXIST_TIME = 5; // 单位s,一个线程持有锁的最大时间
private static final String LOCK_PREX = "lock_"; // 作为锁的key的前缀
private StringRedisTemplate redisTemplate;
private String lockPrex; // 做为锁key的前缀
private int lockMaxExistTime; // 单位s,一个线程持有锁的最大时间
private ThreadLocal<String> threadId = new ThreadLocal<String>(); // 线程变量
public DistributeLock(StringRedisTemplate redisTemplate){
this(redisTemplate, LOCK_PREX, LOCK_MAX_EXIST_TIME);
}
public DistributeLock(StringRedisTemplate redisTemplate, String lockPrex, int lockMaxExistTime){
this.redisTemplate = redisTemplate;
this.lockPrex = lockPrex;
this.lockMaxExistTime = lockMaxExistTime;
}
@Override
public void lock(String lock){
Assert.notNull(lock, "lock can't be null!");
String lockKey = getLockKey(lock);
BoundValueOperations<String,String> keyBoundValueOperations = redisTemplate.boundValueOps(lockKey);
while(true){
// 如果上次拿到锁的是自己,则本次也可以拿到锁:实现可重入
String value = keyBoundValueOperations.get();
// 根据传入的值,判断用户是否持有这个锁
if(value != null && value.equals(String.valueOf(threadId.get()))){
// 重置过期时间
keyBoundValueOperations.expire(lockMaxExistTime, TimeUnit.SECONDS);
break;
}
if(keyBoundValueOperations.setIfAbsent(lockKey)){
// 每次获取锁时,必须重新生成id值
String keyUniqueId = UUID.randomUUID().toString(); // 生成key的唯一值
threadId.set(keyUniqueId);
// 显设置value,再设置过期日期,否则过期日期无效
keyBoundValueOperations.set(String.valueOf(keyUniqueId));
// 为了避免一个用户拿到锁后,进行过程中没有正常释放锁,这里设置一个默认过期实际,这段非常重要,如果没有,则会造成死锁
keyBoundValueOperations.expire(lockMaxExistTime, TimeUnit.SECONDS);
// 拿到锁后,跳出循环
break;
}else{
try {
// 短暂休眠,nano避免出现活锁
Thread.sleep(10, (int)(Math.random() * 500));
} catch (InterruptedException e) {
break;
}
}
}
}
/**
* 释放锁,同时要考虑当前锁是否为自己所有,以下情况会导致当前线程失去锁:线程执行的时间超过超时的时间,导致此锁被其它线程拿走; 此时用户不可以执行删除
*
* 以上方法的缺陷:
* a. 在本线程获取值,判断锁本线程所有,但是在执行删除前,锁超时被释放同时被另一个线程获取,则本操作释放锁
*
* 最终解决方案
* a. 使用lua脚本,保证检测和删除在同一事物中
*
*/
@Override
public void unlock(final String lock) {
final String lockKey = getLockKey(lock);
BoundValueOperations<String,String> keyBoundValueOperations = redisTemplate.boundValueOps(lockKey);
String lockValue = keyBoundValueOperations.get();
if(!StringUtils.isEmpty(lockValue) && lockValue.equals(threadId.get())){
redisTemplate.delete(lockKey);
}else{
logger.warn("key=[{}]已经变释放了,本次不执行释放. 线程Id[{}] ", lock, lockValue);
}
}
/**
* 生成key
* @param lock
* @return
*/
private String getLockKey(String lock){
StringBuilder sb = new StringBuilder();
sb.append(lockPrex).append(lock);
return sb.toString();
}
}
2.3. ILockManager和SimpleRedisLockManager
ILockManager: 封装分布锁使用
public interface ILockManager {
/**
* 通过加锁安全执行程序,无返回的数据
* @param lockKeyName key名称
* @param callback
*/
void lockCallBack(String lockKeyName, SimpleCallBack callback);
/**
* 通过加锁安全执行程序,有返回数据
* @param lockKeyName
* @param callback
* @return
*/
<T> T lockCallBackWithRtn(String lockKeyName, ReturnCallBack<T> callback);
}
SimpleRedisLockManager
ILockManager 的实现类,初始化上面实现的锁;
此类封装了使用锁的公共代码,简化分布锁的使用。
定义了两个回调方法,用于用户真正的业务逻辑实现
- SimpleCallBack: 无返回值的回调函数
- ReturnCallBack:有返回数据的回调函数
@Component
public class SimpleRedisLockManager implements ILockManager {
@Autowired
protected StringRedisTemplate redisTemplate;
protected ILock distributeLock; // 分布锁
@PostConstruct
public void init(){
// 初始化锁
distributeLock = new DistributeLock(redisTemplate, "mylock_", 5);
}
@Override
public void lockCallBack(String lockKeyName, SimpleCallBack callback){
Assert.notNull("lockKeyName","lockKeyName 不能为空");
Assert.notNull("callback","callback 不能为空");
try{
// 获取锁
distributeLock.lock(lockKeyName);
callback.execute();
}finally{
// 必须释放锁
distributeLock.unlock(lockKeyName);
}
}
@Override
public <T> T lockCallBackWithRtn(String lockKeyName, ReturnCallBack<T> callback){
Assert.notNull("lockKeyName","lockKeyName 不能为空");
Assert.notNull("callback","callback 不能为空");
try{
// 获取锁
distributeLock.lock(lockKeyName);
return callback.execute();
}finally{
// 必须释放锁
distributeLock.unlock(lockKeyName);
}
}
}
/**
* 无返回值的回调函数
* @author hry
*
*/
public interface SimpleCallBack {
void execute();
}
/**
* 有返回数据的回调函数
*
* @author hry
*
* @param <T>
*/
public interface ReturnCallBack<T> {
T execute();
}
2.4. 真正使用锁的代码TestCtrl
使用非常简单
@Autowired
private SimpleRedisLockManager simpleRedisLockManager;
simpleRedisLockManager.lockCallBack("distributeLock" + ThreadLocalRandom.current().nextInt(1000), new SimpleCallBack() {
@Override
public void execute() {
System.out.println("lockCallBack");
}
});
2.5. 以上锁实现依然存在不足之处
- 如果线程A拿到锁超过规定的时间还没有结束,则此时redis会自动释放锁。此时线程B拿到锁,则同时线程A和线程B同时拿到锁。对于这种情况,可以通过设置合理的超时时间解决。
- 如果并发量很大,则可能出现多个线程同时拥有锁。这是因为在DistributeLock的lock和unlock方法都执行多条语句且这些语句不是事务的。比如线程A在unlock时,通过get方法得知自己拥有锁,然后他执行释放锁操作。在这两个操作之间,redis发现锁到期,自动删除锁,此时线程B申请并且得到锁。这时线程A才执行删除锁操作,则另外线程C也可以得到锁,此时线程B,C同时得到锁。这种情况可以通过下文的lua方法解决
3. 使用lua脚本实现分布锁
上面的锁的实现,之所有有问题,关键是执行的多条语句不在一个事务中。而本节介绍的lua正好可以解决这个问题。
redis 2.6.0之后的版本开始支持lua脚本。lua在redis使用详细见这里。在redis中执行一个lua脚本时redis会将整个脚本作为一个整体执行,中间不会被其他命令插入,解决多个命令事物的问题。
3.1. lua锁脚本
lock脚本:lock.lua
-- Set a lock
-- 如果获取锁成功,则返回 1
local key = KEYS[1]
local content = KEYS[2]
local ttl = ARGV[1]
local lockSet = redis.call('setnx', key, content)
if lockSet == 1 then
redis.call('pexpire', key, ttl)
-- redis.call('incr', "count")
else
-- 如果value相同,则认为是同一个线程的请求,则认为重入锁
local value = redis.call('get', key)
if(value == content) then
lockSet = 1;
redis.call('pexpire', key, ttl)
end
end
return lockSet
unlock脚本: unlock.lua
-- unlock key
local key = KEYS[1]
local content = KEYS[2]
local value = redis.call('get', key)
if value == content then
-- redis.call('decr', "count")
return redis.call('del', key);
end
return 0
3.2. LuaDistributeLock
实现ILock接口
LuaDistributeLock 实现业务逻辑和DistributeLock基本相同。这里在创建LuaDistributeLock时会调用init方法初始化lock和unlock脚本,生成相应的DefaultRedisScript对象,这两个对象可以被重复使用,不需要每次执行lock/unlock就需要初始化一个对象
public class LuaDistributeLock implements ILock {
private static final int LOCK_MAX_EXIST_TIME = 5; // 单位s,一个线程持有锁的最大时间
private static final String LOCK_PREX = "lock_"; // 作为锁的key的前缀
private StringRedisTemplate redisTemplate;
private String lockPrex; // 做为锁key的前缀
private int lockMaxExistTime; // 单位s,一个线程持有锁的最大时间
private DefaultRedisScript<Long> lockScript; // 锁脚本
private DefaultRedisScript<Long> unlockScript; // 解锁脚本
// 线程变量
private ThreadLocal<String> threadKeyId = new ThreadLocal<String>(){
@Override
protected String initialValue() {
return UUID.randomUUID().toString();
}
};
public LuaDistributeLock(StringRedisTemplate redisTemplate){
this(redisTemplate, LOCK_PREX, LOCK_MAX_EXIST_TIME);
}
public LuaDistributeLock(StringRedisTemplate redisTemplate, String lockPrex, int lockMaxExistTime){
this.redisTemplate = redisTemplate;
this.lockPrex = lockPrex;
this.lockMaxExistTime = lockMaxExistTime;
// init
init();
}
/**
* 生成
*/
public void init() {
// Lock script
lockScript = new DefaultRedisScript<Long>();
lockScript.setScriptSource(
new ResourceScriptSource(new ClassPathResource("com/hry/spring/redis/distributedlock/lock/lock.lua")));
lockScript.setResultType(Long.class);
// unlock script
unlockScript = new DefaultRedisScript<Long>();
unlockScript.setScriptSource(
new ResourceScriptSource(new ClassPathResource("com/hry/spring/redis/distributedlock/lock/unlock.lua")));
unlockScript.setResultType(Long.class);
}
@Override
public void lock(String lock2){
Assert.notNull(lock2, "lock2 can't be null!");
String lockKey = getLockKey(lock2);
while(true){
List<String> keyList = new ArrayList<String>();
keyList.add(lockKey);
keyList.add(threadKeyId.get());
if(redisTemplate.execute(lockScript, keyList, String.valueOf(lockMaxExistTime * 1000)) > 0){
break;
}else{
try {
// 短暂休眠,nano避免出现活锁
Thread.sleep(10, (int)(Math.random() * 500));
} catch (InterruptedException e) {
break;
}
}
}
}
/**
* 释放锁,同时要考虑当前锁是否为自己所有,以下情况会导致当前线程失去锁:线程执行的时间超过超时的时间,导致此锁被其它线程拿走; 此时用户不可以执行删除
*/
@Override
public void unlock(final String lock) {
final String lockKey = getLockKey(lock);
List<String> keyList = new ArrayList<String>();
keyList.add(lockKey);
keyList.add(threadKeyId.get());
redisTemplate.execute(unlockScript, keyList);
}
/**
* 生成key
* @param lock
* @return
*/
private String getLockKey(String lock){
StringBuilder sb = new StringBuilder();
sb.append(lockPrex).append(lock);
return sb.toString();
}
}
3.3. LuaLockRedisLockManager
继承上文的SimpleRedisLockManager ,重写init,初始化刚写的锁
@Component
public class LuaLockRedisLockManager extends SimpleRedisLockManager {
@PostConstruct
public void init(){
// 初始化锁
distributeLock = new LuaDistributeLock(redisTemplate, "mylock_", 5);
}
}
3.4. 真正使用锁的代码TestCtrl
用法和SimpleRedisLockManager相同
@Autowired
private LuaLockRedisLockManager luaLockRedisLockManager;
luaLockRedisLockManager.lockCallBack("distributeLock2" + ThreadLocalRandom.current().nextInt(1000), new SimpleCallBack() {
@Override
public void execute() {
System.out.println("distributeLock2");
}
});
4. 性能比较
下面通过压力测试工具ab,对这两种实现进行压力测试:100个并发线程,总共发送1000个请求
simpleRedisLockManager: ab -n 1000 -c 100 http://192.168.188.4:8080/distributeLock2
luaLockRedisLockManager: ab -n 1000 -c 100 http://192.168.188.4:8080/distributeLock
详细数据如下
分析: lua脚本比redis的实现快很多,lua脚本的速度比使用普通命令快一倍。越是在高压力的情况下,lua的表现越好
5. 总结
为了更好的使用锁,建议满足以下条件
- 使用lua实现分布式锁
- 根据业务逻辑设置合理的超时时间
- 锁的粒度尽可能小,减少冲突