# 破解查询分析中的高基数分类难题:实用技术与最佳实践
在进行查询分析时,我们常常需要根据分类列创建过滤器。其中的一个挑战在于,你通常需要指定**确切的**分类值。然而,当有效值数量较多时,这个问题就变得更加复杂。
## 引言
在进行数据查询分析的过程中,高基数分类列可能带来挑战。尤其是在处理需要精确识别和过滤特定分类值的情境下,这种挑战尤为突出。本文将探讨如何有效处理这些高基数分类问题,并提供实用的代码示例来指导你实现这一目标。
## 如何应对高基数分类问题
### 高基数的挑战
- **上下文限制**:在上下文窗口有限的大语言模型(LLM)中,列出所有可能值可能会导致超出上下文限制。
- **识别准确性**:随着有效值的增加,LLM对特定值的聚焦能力可能下降。
### 解决方案
#### 增大上下文窗口
一种策略是使用更大的上下文窗口或模型版本。然而,这并不能确保模型准确识别所有可能的分类值。
```python
from langchain_openai import ChatOpenAI
llm_long = ChatOpenAI(model="gpt-4-turbo-preview", temperature=0)
# 使用API代理服务提高访问稳定性
使用向量索引
通过创建向量索引,筛选出与查询最相关的N个值,并将其传递给模型。这种方法可以提高模型的准确性。
from langchain_chroma import Chroma
from langchain_openai import OpenAIEmbeddings
embeddings = OpenAIEmbeddings(model="text-embedding-3-small")
# 使用API代理服务提高访问稳定性
vectorstore = Chroma.from_texts(names, embeddings, collection_name="author_names")
def select_names(question):
_docs = vectorstore.similarity_search(question, k=10)
_names = [d.page_content for d in _docs]
return ", ".join(_names)
结果过滤与校正
允许LLM初步填充值,然后使用后处理步骤将其修正为有效的分类值。
from langchain_core.pydantic_v1 import validator
class Search(BaseModel):
query: str
author: str
@validator("author")
def correct_author(cls, v: str) -> str:
return vectorstore.similarity_search(v, k=1)[0].page_content
代码示例
以下是完整的代码示例,展示了如何实现上述解决方案:
from langchain_core.pydantic_v1 import BaseModel, Field, validator
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnablePassthrough
from langchain_openai import ChatOpenAI
from langchain_chroma import Chroma
from langchain_openai import OpenAIEmbeddings
from faker import Faker
fake = Faker()
names = [fake.name() for _ in range(10000)]
embeddings = OpenAIEmbeddings(model="text-embedding-3-small")
vectorstore = Chroma.from_texts(names, embeddings, collection_name="author_names")
class Search(BaseModel):
query: str
author: str
@validator("author")
def correct_author(cls, v: str) -> str:
return vectorstore.similarity_search(v, k=1)[0].page_content
system = """Generate a relevant search query for a library system"""
prompt = ChatPromptTemplate.from_messages(
[
("system", system),
("human", "{question}"),
]
)
llm = ChatOpenAI(model="gpt-3.5-turbo-0125", temperature=0)
corrective_structure_llm = llm.with_structured_output(Search)
corrective_query_analyzer = (
{"question": RunnablePassthrough()} | prompt | corrective_structure_llm
)
result = corrective_query_analyzer.invoke("what are books about aliens by jes knight")
print(result)
常见问题和解决方案
- 模型上下文限制:考虑使用分批处理技术或向量索引以减少上下文占用。
- 分类值偏差:在分类值校正步骤中,确保所选索引足够准确。
总结与进一步学习资源
本文介绍了如何处理查询分析中的高基数分类问题。通过使用增大上下文窗口、创建向量索引及后处理校正等策略,你可以有效提升LLM在高基数场景下的表现。
推荐资源
参考资料
- OpenAI API 文档
- LangChain与LangChroma库文档
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
---END---