自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(17)
  • 收藏
  • 关注

原创 腾讯云spring boot上面无法找到本地MySQL表的怪异问题

这是在本地Windows开发时的语句,当时的写法是Obsevation, 而不是observation,在Windows环境下,都可以访问,数据库不区分大小写,但是Ubuntu不行。已经在服务器的MySQL数据库种创建了observation表,但是却无法在spring boot中访问。

2023-03-29 15:36:29 136

原创 在torch编写过程中的几个技巧

初学pytorch,往往是有点难度,在几次的练习后,逐渐熟练起来,这里介绍几个使用编程的技巧,也使后人少走弯路。1、数据集的划分通常情况下,机器学习的过程必然少不了数据集的清洗和划分,在划分的过程是存在技巧的。以1万条数据的数据集为例,我们选取8000条数据进行训练,2000条数据进行测试,那么在这8000条的数据中,我们每一个训练的epoch都会完整的使用到这8000条数据,在不同的epoch中,对这8000条数据进行shuffle操作,即打乱训练顺序,可以有更好的训练效果。2、torch中的.

2021-06-11 09:20:10 195

原创 智能评卷系统的第三种实现方式具体实现

本文通过具体实现智能评卷系统的第三种实现方式,来展示网络的搭建和训练过程。首先,构建一个完整的网络,它不仅包含了前面已有的网络编码部分,同时进行了网络的后半部分的解码输出。参考到编码的向量其句向量维度的大小为768,因此在最后的MLP全连接网络中,采用了多层的网络,逐步进行降维,最后输出结果。具体代码如下:import torchimport torch.nn as nnimport torch.nn.functional as Ffrom utils import get_max_hid.

2021-06-11 09:06:10 193

原创 智能评卷系统的第三种实现方式

本文介绍最后一种的实现方式,该方式结合了BiLSTM双向的解码器进行解码操作,将解码后的向量进行了拼接,再输入几层全连接网络进行训练,最后通过softmax进行分类输出。对考生答案进行正确评阅需要获取考生答案中每一句话的完整语义信息,即句子中各词汇的关联信息,仅仅获取句子中各个词汇的语义向量是远远不的,因此需要在词向量序列基础上对句子进行语义抽取。本文使用 BiLSTM 对考生答案Xe和参考答案Ae中的每一句话进行编码,获取答案文本中每句话的语义向量。BiLSTM 由前向 LSTM 和后向 LST.

2021-06-11 08:52:23 202

原创 智能评卷系统的第二种实现方式具体实现

文本在上文的基础上,对智能评卷系统的第二种实现方式进行代码级别的实现,以展示训练和实现的具体过程。首先,本次的实现改进了互注意力机制的实现方式,在原来的numpy的实现方式改为了torch的实现,利用torch的softmax函数进行归一化操作,该方式的归一化提高了数据的准确性。class ShuoFaObj(object): def __init__(self): self.ref_vector = load_data('./ref.csv') def get_.

2021-06-11 08:42:30 133

原创 智能评卷系统的第二种实现方式

本文将介绍智能评阅系统的第二种实现方式,它相比于第一种,引入了知识点的概念,将考生答案在知识点级别上进行了评阅。由于专业考试的严肃性和公平性,对评阅模型的可解释性有较高的要求,模型不仅要正确地给出考生答案的总得分,同时也需要给出打分的依据。在业主观题评阅场景中,一道题目的参考答案通常包含多个知识点,每个知识有相应的分值,专家根据考生答案对知识点的命中情况进行打分。为了给模打分结果以合理的解释,本模型模仿专家评阅过程,在知识点级别对考生答和参考答案进行匹配,以获取考生答案对各知识点的命中情况,最终结合知.

2021-06-11 08:36:45 146

原创 第一种实现的结果展示

经过了上文的互注意力机制,本文进行完整的第一种实现方法的展示首先展示互注意力机制的实现。def create_vector_k(index): saved_vector = load_data('./vec.csv') ref_vector = load_data('./ref.csv') vectorA_list = ref_vector[0] vectorX_list = saved_vector[index] A = np.array(vectorA_l.

2021-06-11 08:31:48 194

原创 互注意力机制的过程和实现二

本文继续进行互注意力机制的研究和展示上文中介绍了互注意力机制的第一个部分,本文继续进行第二部分的介绍。第二部分是考生答案和参考答案的互注意力。在普通注意力机制中,单向注意力矩阵a中的每一行被简单地相加或者求均值作为最终的注意力权重向量在主观题阅卷任务中,对于考生答案的第p句话xp,即使这句话的内容与参考案完全不相干,在对匹配系数矩阵M进行列归一化之后,xp在参考答案中的句话上的匹配程度之和仍为 1。本文引入考生答案和参考答案的互注意力机来解决这个问题。首先对匹配系数矩阵M进行行归一化,对于给定的参.

2021-06-11 08:24:53 1132

原创 互注意力机制的过程和实现一

本文将介绍互注意力机制的具体实现过程和代码展示在有参考答案的主观题评阅任务中,最终的评分并非仅根据考生答案文本自身的特征,而是需要考虑考生答案和参考答案的匹配程度。专家评阅过中,专家根据考生答案对参考答案中每个知识点的匹配情况进行打分,这就要模型具备捕获考生答案和参考答案中对应知识点的文本并进行匹配的能力。经网络中注意力机制的引入使得模型具有捕捉数据之间的关注重点的能力,文通过注意力机制来计算考生答案和参考答案知识点之间的匹配程度。不同相关工作中所使用的普通注意力机制,为了有效地区分出考生答案中与知.

2021-06-11 08:18:45 2760 1

原创 智能评卷系统的第一种实现方式

本文将介绍智能评卷系统的三种实现方式的第一种实现方式。针对有参考答案的论证类专业主观题评阅任务,本文提出基于 BiLSTM 和互注意力机制的主观题评阅模型,自动给出考生答案得分,同时给出打分依据,即考生答案在各知识点上的命中情况,模型结构如图 3-1 所示。模型主要包括三个部分:第一部分是基于 BiLSTM 的答案文本语义特征抽取,采用 BiLSTM 和最大池化策略,分别基于词汇序列和句子序列建模答案句向量和段落向量;第二部分是基于互注意力机制的句子级别的匹配信息计算,通过互注意力机制,在句子层面计.

2021-06-11 08:12:09 385

原创 智能评卷系统的三种实现方式

本文将讲述和介绍智能评卷系统的三种具体实现方式,并在后续的文章种介绍实现的具体细节。上图所示得到模型便是实现方式的完整展示,其中我将在三个层面上进行实现。第一个步骤的实现包含从考生和参考答案的文本,进行一个答案的分词操作,然后进行Bert的嵌入编码。经过编码的考生答案和参考答案都是一共句向量的集合。下一步便引入互注意力机制的核心思想,将考生答案转化为标准的参考答案的展示形式。在第一个思想中,将转化后的答案连接到全连接网络中进行线下变换然后经过softmax层进行输出,输出的结果便是考生答案的评分。.

2021-06-11 08:07:40 552

原创 互注意力机制下的评阅模型实现

经过前几个周的调试和编写,基于互注意力机制的模型逐渐成型了。因此在此进行总结。首先,项目和传统的机器学习神经网络方法一样,即编码-计算-解码过程。在编码阶段,采用了Bert预训练模型,输入的内容是考生答案和参考答案,通过Bert进行编码以后,就生成了编码的考生答案向量和参考答案向量。第二步的工作是把这些拿到的考生答案的句向量和参考答案的句向量集合进行一次“混合”,得到互注意力机制下的向量。具体来说是,我们假设考生答案的句向量个数是M,参考答案是N,我们队这两个句向量集合做内积,得到一个M*N的矩阵

2021-05-10 16:19:51 672

原创 MLP模型中的参数保存和加载问题

MLP模型中的参数保存和加载问题在深度学习的模型训练过程中,多数情况下,模型的参数是可以保存和加载的。本文将介绍模型的参数存储和加载。深度学习的参数的存储通常可以采用 pkl 文件进行保存和加载。我们的MLP网络采用了两层的网络结构,第一层是从考生输入的标准答案表达的向量集合X,通过flatten操作,得到一个一维向量Vk。下一步的模型是两层全链接网络。最后输出这个考生的得分概率。这个过程中,产生的参数主要有W1,W2,B1,B2分别表示第一层和第二层网络的权重矩阵和偏置大小。我们通过sav

2021-04-21 09:36:31 1837

原创 数据的分句向量化

数据的分句向量化本节将进行数据读入和向量化,首先,使用read_cas读入考生答案文本(介于保密,此处不展示),然后使用bert和分词方法使句子向量化。最后通过互注意力机制实现考生答案的标准答案表达。通过Bert产生的句子是768维的一个向量,我们使用互注意力机制,实现考生答案的标准答案表达。引入注意力使得模型可以同时参考标准答案和考生答案,我们的互注意力就是让每一个考生的答案可以用标准答案的向量进行表示,当然,此处采用的是线性组合的方式。当得到了注意力向量过程中,值得注意的一点是,需要进行行

2021-04-21 09:23:45 351

原创 具体的实现细节

根据此前的思路,我们开始进行了项目的工作。在输入中,我们约定了以下的标志:问题背景B,参考答案R,标记正确答案P,标记错误答案N。我们的工作思路分成两步,第一步的问题生成和第二步的筛选和评价。对于第一步,所谓的问题,我更愿把它描述成输入文本的一系列特征。它可以用向量来表示。如下图,我们的思路是第一步根据文本生成问题,这里我们生成一系列的向量,它们可以代表这个文本的特征,甚至和文本认为是等价的,随后,用同样的方法对P和N进行相同的操作。这样所有的输入即那些文本就都表示成了向量,每一段文本对应一个向

2021-04-13 10:31:16 309

原创 关于正确与错误答案区分和评价函数的可解释性思考

通过对问题智能评分的思路进行解析,我们进一步思考一个问题,作为其中关键性的评价函数,它是解释的吗?本文将做出一些思考。

2021-04-07 09:38:08 207

原创 关于短文本智能评卷系统的一个思路

关于短文本智能评卷功能实现的一个思路part one. 背景与功能part two. 基本方法和思路1.问题生成2.问题筛选part one. 背景与功能随着智能化的日益普及,网上智能阅卷成为了一个热门的事物。目前来看的智能阅卷现状,答案固定的选择题和填空题已经基本上完成了以机代人的评阅过程。但是对于文本稍长的简答题和短文本,还没有一个很好的评阅情况。笔者在校期间,利用项目实训课程的契机,打算在3个月的时间内进行一次尝试,从零到一,由简到难地开发一个智能的短文本评阅功能。part two. 基本方

2021-04-02 09:09:25 180

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除