我们现在接触的很多算法中都会看到对某项加一个exp,很长一段时间不理解为什么要加这个exp,今天终于有一些理解了:
一方面,要保证每一个factor是正的,factor可以大于一也可以不归一化,但一定要是正的;
另一方面,我们最后要通过最大似然函数优化的,似然值是这些factor的累乘,对每一项的累乘。这么多项相乘没有人直接去优化的,即使优化也很麻烦,很难操作,另外一种思路是将累乘转变成累加就好办了:取log变成对数似然,然后这些累乘变成累加了嘛,然后优化这个累加。无论是算梯度用梯度下降,还是另导数为零求解析解都很方便了(这个表达形态下的目标函数是凸的)。