对于一些机器学习的算法中为什么要加exp

本文解释了在算法中使用exp函数的原因:确保因子为正并简化优化过程。通过对因子取指数,可以保证其正值特性,并且通过log转换将乘法变为加法,使优化更加简便。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

我们现在接触的很多算法中都会看到对某项加一个exp,很长一段时间不理解为什么要加这个exp,今天终于有一些理解了:

一方面,要保证每一个factor是正的,factor可以大于一也可以不归一化,但一定要是正的;
另一方面,我们最后要通过最大似然函数优化的,似然值是这些factor的累乘,对每一项的累乘。这么多项相乘没有人直接去优化的,即使优化也很麻烦,很难操作,另外一种思路是将累乘转变成累加就好办了:取log变成对数似然,然后这些累乘变成累加了嘛,然后优化这个累加。无论是算梯度用梯度下降,还是另导数为零求解析解都很方便了(这个表达形态下的目标函数是凸的)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值