catural Language Processing
Neural Network Methods for Natural Language Processing pdf,书签齐全,易读
Deep Learning 谷歌科学家编写的第一本深度学习全书
第一本深度学习专著,由谷歌大脑团队科学家 Ian Goodfellow, Yoshua Bengio and Aaron Courville撰写MIT出版的《Deep Learning》,全书达800多页,总结了最新的深度学习成果,全彩色排版,字迹清晰
Shawn的Deferred Shading原文讲解ppt
Shawn的Deferred Shading原文讲解ppt 对初学者理解Deferred Shading有一定的帮助
Shawn的Deferred Shading ppt 翻译
Shawn的Deferred Shading ppt 翻译 Shawn的Deferred Shading讲解ppt是很好的学习延迟着色的资源!
Fraps3.0.3_CN安装包
Fraps是一款显卡辅助软件,用它可以轻松了解机器在运行游戏时的帧数,从而了解机器的性能! 另外它还具备在游戏中的截图和视频捕捉功能,可以方便的进行截图和动画捕捉。 它录制的视频是无损压缩的avi格式,质量较高,而且不丢帧,缺点是录制的文件较大,因此如果想要缩小文件,可以使用视频编辑软件进行格式转换、降低分辨率等操作进行压缩。
GPU精粹1:实时图形编程的技术、技巧和技艺完整版
GPU精粹1:实时图形编程的技术、技巧和技艺(完整中文版) 0资源分
北大张恭庆著《泛函分析讲义》完整版
泛函分析(Functional Analysis)是现代数学的一个分支,隶属于分析学,其研究的主要对象是函数构成的空间。泛函分析是由对函数的变换(如傅立叶变换等)的性质的研究和对微分方程以及积分方程的研究发展而来的。使用泛函作为表述源自变分法,代表作用于函数的函数。巴拿赫(Stefan Banach)是泛函分析理论的主要奠基人之一,而数学家兼物理学家伏尔泰拉(Vito Volterra)对泛函分析的广泛应用有重要贡献。
计算机技术硕士模式识别课件
计算机技术硕士模式识别课程课件。
第一章:模式识别概述:模式识别的基本概念,模式识别系统,模式识别的发展和应用,模式识别的研究方法;模式识别应用:生物特征识别。
第二章:线性判别函数:引言;感知准则函数和梯度下降法;最小平方误差准则函数,分段线性判别函数;Fisher线性判别函数,支持向量机;
第三章:Bayes决策理论:引言;基于最小错误概率的Bayes决策理论;基于最小风险的Bayes决策;Bayes分类器和判别函数;正态分布时的Bayes决策法则。
第四章:近邻法与聚类:近邻法则的一般概念,K-近邻法;快速近邻法;聚类:样本间相似性的度量;聚类的准则函数,分级聚类算法;动态聚类算法。
第五章:模式特征的抽取与选择:模式特征概念,多个分布的特征选择,特征抽取的方法举例;
第六章:模糊数学在模式识别中的应用:模糊集合论的基本概念、原理及在模式识别中的应用
第七章:神经网络在模式识别中的应用:神经网络的基本概念、原理及在模式识别中的应用;
Ogre 阴影绘制详解(Shadow Mapping )
A discussion of shadow mapping: the algorithm, variants, theory and analysis,and implementation.