java基础-小数计算为什么不精确

违反直觉

计算机之所以叫"计算"机就是因为发明它主要是用来计算的,"计算"当然是它的特长,在大家的印象中,计算一定是非常准确的。但实际上,即使在一些非常基本的小数运算中,计算的结果也是不精确的。

比如:

float f = 0.1f*0.1f;
System.out.println(f);

这个结果看上去,不言而喻,应该是0.01,但实际上,屏幕输出却是0.010000001,后面多了个1。

看上去这么简单的运算,计算机怎么会出错了呢?

为什么会出错呢?

实际上,不是运算本身会出错,而是计算机根本就不能精确的表示很多数,比如0.1这个数。

计算机是用一种二进制格式存储小数的,这个二进制格式不能精确表示0.1,它只能表示一个非常接近0.1但又不等于0.1的一个数。

数字都不能精确表示,在不精确数字上的运算结果不精确也就不足为奇了。

0.1怎么会不能精确表示呢?在十进制的世界里是可以的,但在二进制的世界里不行。在说二进制之前,我们先来看下熟悉的十进制。

实际上,十进制也只能表示那些可以表述为10的多少次方和的数,比如12.345,实际上表示的:110+21+30.1+40.01+5*0.001,与整数的表示类似,小数点后面的每个位置也都有一个位权,从左到右,依次为 0.1,0.01,0.001,…即10^(-1), 10^(-2), 10^(-3)。

很多数,十进制也是不能精确表示的,比如1/3, 保留三位小数的话,十进制表示是0.333,但无论后面保留多少位小数,都是不精确的,用0.333进行运算,比如乘以3,期望结果是1,但实际上却是0.999。

二进制是类似的,但二进制只能表示哪些可以表述为2的多少次方和的数,来看下2的次方的一些例子:

2的次方十进制
2^(-1)0.5
2^(-2)0.25
2^(-3)0.125
2^(-4)0.0625

因此只可以精确表示为2的某次方之和的数,其他数则不能精确表示。

为什么一定要用二进制呢?

为什么就不能用我们熟悉的十进制呢?在最最底层,计算机使用的电子元器件只能表示两个状态,通常是低压和高压,对应0和1,使用二进制容易基于这些电子器件构建硬件设备和进行运算。如果非要使用十进制,则这些硬件就会复杂很多,并且效率低下。

为什么有的小数计算是准确的?

如果你编写程序进行试验,你会发现有的计算结果是准确的。比如,我用Java写:

System.out.println(0.1f + 0.1f);
System.out.println(0.1f * 0.1f);

第一行输出0.2,第二行输出0.010000001。按照上面的说法,第一行的结果应该也不对啊?

其实,这只是Java语言给我们造成的假象,计算结果其实也是不精确的,但是由于结果和0.2足够接近,在输出的时候,Java选择了输出0.2这个看上去非常精简的数字,而不是一个中间有很多0的小数。

在误差足够小的时候,结果看上去是精确的,但不精确才是常态。

怎么处理计算不精确

计算不精确,怎么办呢?

  • 减小精度。大部分情况下,我们不需要那么高的精度,可以四舍五入,或者在输出的时候只保留固定个数的小数位。
  • 进行转换。如果真的需要比较高的精度,可以将小数转化为整数进行运算,运算结束后再转化为小数。
  • 使用十进制的数据类型。这个没有统一的规范,在Java中是用BigDecimal,运算更准确,但效率比较低。

小结

小数计算为什么会出错呢?

理由就是:很多小数计算机中不能精确表示,通常只可以精确表示为2的某次方之和的数,其他数则不能精确表示。计算机的基本思维是二进制的,所以,意料之外,情理之中吧。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值