二 有限元分析的基本过程
1 单元
有限元 - 连续体的离散化,将整体结构分割为若干基本单元,每个单元有若干节点。单元中的基本物理量 (结构分析 - 位移;热分析 - 温度;电磁分析 - 电位势,磁通量;流体分析 - 流量,等) 用单元节点处的值表示,可以写为:
{u} = [P] {ue}
其中:
{u} - 单元中任意点的物理量值,它是坐标的函数:
{u} = {u (x,y,z)}
[P] - 形状函数,与单元形状、节点坐标和节点自由度等有关
{ue} - 单元节点的物理量值;对于结构位移法可以是位移、转
角或其对坐标的导数。
常用的大型分析软件中基本上是位移+转角。
结构分析时一些常用单元的节点自由度 (在单元坐标系中)
杆元:单元形状为线段,变形形式为拉伸和扭转。
在单元坐标系中:
节点自由度为 Tx 和 Rx,其中 x 为杆的轴线。
在总体坐标系中:
三个位移和三个转角 (T1,T2,T3,R1,R2,R3)。
梁元:单元形状为线段,变形形式为拉伸、扭转,以及两个垂
直于轴线方向的弯曲
在单元坐标系中:
节点自由度为 Tx,Ty,Tz,Rx,Ry,Rz。其中 x 为梁的
轴线,Y,z 为梁截面的两个抗弯惯矩主轴方向。
在总体坐标系中:
三个位移和三个转角 (T1,T2,T3,R1,R2,R3)。
平面单元:三角形或四边形,变形为两个面内位移。
节点自由度为 T1,T2。单元坐标系与总体坐标系一致。
轴对称单元:三角形或四边形,变形为两个面内位移。
节点自由度为 T1,T2。单元坐标系与总体坐标系一致。
板壳元:三角形或四边形,变形包括两个面内位移,法向位移
及两个转角 (一般缺少绕法线转角)。
在单元坐标系中:
三个位移和三个转角 (Tx,Ty,Tz,Rx,Ry)
在总体坐标系中:
三个位移和三个转角 (T1,T2,T3,R1,R2,R3)
三维实体:四面体~六面体,三个方向的位移,无转角。
节点自由度为三个位移 (T1,T2,T3),单元坐标系与总
体坐标系一致。
有限元分析的基本知识 (一份培训资料) (2)
最新推荐文章于 2025-05-23 16:21:36 发布