自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(23)
  • 资源 (1)
  • 收藏
  • 关注

原创 WPS怎么输入分段函数,定义3种函数,2类分段条件

经过不断思考和尝试的结果。函数瞎写的,不要考虑意义,勿杠

2021-03-02 11:18:29 2106

原创 WPS公式编辑器

wps的公式编辑器,工具栏变成小窗口,想让它停靠在公式编辑器里怎么办参考链接:https://www.office26.com/wps/wps_8144.html

2021-03-02 10:54:16 965 1

原创 pytorch环境numba安装包安装失败,llvmlite安装失败!

真的绝了,环境安装了一周,也是我完蛋,但这种玄学真的靠命,好在终于装上了,原因就是pip的版本太低,目前已经由20版了,可之前系统里还是9.0,所以安装包就各种报错,鬼知道是因为pip版本的问题!也更新过pip的版本,不知道是不是指令不够强制,并没有真的更新到最新,最后用的这个指令强制了pip的升级python -m pip install -U --force-reinstall pip之后再安装包就都成功了!...

2021-01-05 22:42:01 1466 1

原创 win10+vs2017+cuda9.0+cudnn9.0安装

安装了n多次。。。。。度过了一个非常“有意义”的中秋节。建议默认安装在C盘,cuda比较不好装,装不上的时候检查一下,电脑的vs装了没,版本匹配不。这个没有问题的情况下,去C盘的program files 和program files(*64)里面把所有NVDIA的文件夹都删了,然后重新装cuda,默认安装就好。之后把cudnn里边的bin,lib,include文件夹里边的东西复制粘贴到...

2019-09-14 01:54:02 866

原创 关于maxpool2d()这个函数的ceil_mode的参数

网上的解释(https://blog.csdn.net/GZHermit/article/details/79351803)没懂,大佬图解了一下瞬间秒懂。

2019-09-07 21:58:16 3478

原创 2019/8/14Faster RCNN自学记录

win10下跑pytorch框架的Faster RCNN(https://github.com/ruotianluo/pytorch-faster-rcnn),安装git,安装教程(https://blog.csdn.net/qq_32786873/article/details/80570783)python的某些函数append和extend(https://www.cnblogs.c...

2019-08-28 19:38:07 268 1

原创 2019/6/15/CS231n(SVM+softmax)学习记录

感觉自己是鱼的记忆,3天没看,我都得用脑子过一下我的程序存在哪里了,怎么打开的来着?!神烦……日常自我怀疑:我是猪吗?今天又过了一遍翻译版的课件,感觉又学了一边新知识……(https://zhuanlan.zhihu.com/p/21930884?refer=intelligentuni)关于SVM的梯度为什么是用两个dw相加,看这个就清楚很多了(https://blog.csdn.net...

2019-06-17 22:32:09 178

原创 2019/6/12CS231n课程笔记(图像识别和分割)

1、语义分割,给出一张图片,对图像上的每一个像素进行分类,对每一个像素产生一个分类类标。2、上采样的两种方法:去池化(还有一种是记录池化的时候保留的max 的位置,去池化的时候把数据填到相应的位置,其余位置补零)去卷积:用输入和卷积核进行运算,重叠的部分进行相加运算。3、rcnn,fast rcnn,faster rcnn...

2019-06-12 00:34:56 331

原创 2019/6/9CS231n课程笔记(深度学习框架)

1、设置#设置用CPU还是GPU进行with tf.device('/gpu:0'): balabalabala2、一种只有我才能看懂的笔记……#define计算框架N,D,H=64,1000,100x=tf.placeholder(tf.float32,shape=(N,D))y=tf.placeholder(tf.float32,shape=(N,D))w1=...

2019-06-09 14:53:29 668

原创 2019/6/8CS231n课程笔记(优化与迁移学习)

目录优化1、梯度下降(1)、动量,就给梯度下降加了个速度(助力)(2)、对梯度进行处理:AdaGrad和RMSProp(3)、结合了速度和平方梯度的方法Adam2、学习率3、另一种优化的思路:海森矩阵(牛顿定理)总结:4、model ensembly正则化1、使用正则项2、Dropout3、数据增强4、其他的一些方法:迁移学习优...

2019-06-09 01:15:33 396

原创 2019/6/8CS231n课程笔记(批量归一化、监控训练过程、优化超参数)

目录批量归一化监控训练过程优化超参数批量归一化在训练过程中,每一层的输入分布总是变来变去,我们希望它能稳定成高斯分布,所以在全连接层或是卷积层之后进行批量归一化的操作,使得每一层的激活分布固定下来。首先计算每一维度的均值和方差,之后进行归一化。在卷积层后面进行批量归一化的时候,不仅对训练数据进行批量归一化,对feature map也将进行这一操作。对于ta...

2019-06-08 14:54:31 355

原创 2019/6/7CS231n课程笔记(激活函数、数据预处理、初始化权值)

目录激活函数1、几种常见的激活函数数据预处理权值的初始化激活函数一个写的很全的整理文档(https://blog.csdn.net/u012347027/article/details/80639331)另一位博主写的。激活函数可视化:https://dashee87.github.io/deep%20learning/visualising-activation-...

2019-06-08 12:26:41 469

原创 CS231n_homework1_SVM笔记

SVM工作原理解释的很清楚很清楚很清楚的文章:(https://www.meiwen.com.cn/subject/btmyfftx.html)1、range([start,] stop[, step])根据开始、结束、步长这三个参数生成一个序列。 #我们定义一个从1开始到30结束,步长为3的列表>>>print('range(1,30,3)表示:',range(...

2019-06-05 18:56:55 209

原创 2019/6/3CS231n课程笔记(卷积神经网络)

卷积1、卷积神经网络vs深度神经网络训练卷积层,因为卷积层更能保持输入的空间结构。对于这一点,我的理解是:卷积神经网络处理图片的时候是将整幅图都作为输入,不会破坏图的这种结构,而用普通的深层神经网络,就是在利用每个像素的信息单独的进行处理,破坏了图像像素之间的信息。深度神经网络卷积神经网络2、对于常见大小的一些卷积核,如何选择padding才能保证卷积的结果保持原图像的大小不变呢?...

2019-06-04 20:39:43 643

原创 2019/6/4CS231n课程笔记(反向传播和神经网络)

反向传播课程回顾简单线性关系的反向传播过程所以所谓的反向传播过程就是在一步一步地叠乘每一步的导数,最后算的对于输入权值的导数。也就是绿色前向传播得到output,利用output经过红色的反向传播算回去~一个稍复杂的例子:把不同颜色阅读顺序如下:1 2 3 4 5(以蓝红黑紫黄的顺序进行回顾)1、当存在max门时该如何处理呢?对于选择出的...

2019-06-04 16:32:38 282 1

原创 CS231n_homework1_KNN笔记

感谢以下提到的链接作者给予的帮助!目录感谢一下提到的链接作者给予的帮助!np.random.choice()函数numpy.flatnonzero()函数enumerate() 函数shape()函数numpy的reshape()函数(https://blog.csdn.net/zhanggonglalala/article/details/79356653)xra...

2019-06-03 17:08:16 301

原创 2019/6/1CS231n课程笔记(线性分类器)

作业:k-最近邻法线性分类器,svm和softmax两层卷积神经网络numpy,向量化张量计算。第二章semectic gapintraclass CIFAR10数据集。对单个像素进行比较,L1 distance,L1对坐标有依赖,各个向量中的每一个元素都有意义的时候,L1的效果会更好。使用numpy的向量运算。使得程序很简洁。N个example,训练和...

2019-06-02 12:33:35 234

原创 2019/6/2CS231n课程笔记(损失函数和优化)

损失函数线性分类器,weight表示对应每一类的权重。什么是损失函数,把W作为一个输入,输入到一个函数中,将得分值作为衡量W好坏的标准。多类别SVM分类器看笔记本23页有相关笔记。1、如果我们稍微改变一点车这个分类的score值,我们的损失函数会有什么变化吗?答:不会变化,svm分类器在乎的是正确的比不正确的大1,汽车分数比其他的都要大,1的界限不会被破坏。2、lo...

2019-06-02 12:31:26 347 2

原创 (图像处理∩Deep-Learning)中杂七杂八的概念

1、fine-tuning(https://blog.csdn.net/weixin_42137700/article/details/82107208)微调,在预训练的网络下进行微调,什么意思呢?就是当我有一个新的数据集时,希望我的网络能够更好的对我的数据进行预测的时候,就替换掉预训练好的网络模型中的一些数据,对一部分(通常是高层)或者是全部的层进行继续训练。这样得到的网络对我自己的新数据有...

2019-05-30 09:31:28 587

原创 M2Det的学习过程

不全,待补充主要框架:分析解释这个框图:M2Det主要是有三部分组成,主干网络、MLFPN(muli-level 的FPN、以及预测层。其中主干网络是用两个尺度进行特征提取。将这两个尺度的特征合并输入到MLFPN中MLFPN则由三部分组成,FFM、TUM、SFAM。FFMFFMv1是对主干网中提取出来的内容进行合并,得到base feature。FFMv2是用来...

2019-05-30 09:16:53 1744 1

原创 RCNN(丰富的特征层次结构用于精确的目标检测和语义分割)的学习过程

参考博客:https://www.cnblogs.com/gongxijun/p/7071509.htmlhttps://blog.csdn.net/shenxiaolu1984/article/details/51066975划重点:提出使用候选区域进行卷积提高了检测速度,使用特定任务进行fine-tuning提高了mAP。RCNN的整体框架:图1:目标检测系统概述。1.系统...

2019-05-25 16:56:24 539

原创 特征金字塔(FPN)的学习过程

1、作者将不改变feature map大小的层归为一个stage2、图像的混叠现象:“所谓混叠,即高于采样频率一半的高频信号被映射到信号的低频部分,与原有低频信号叠加,对信号的完整性和准确性产生影响”采样频率必须大于原始信号最高频率的两倍,才能完整地还原原始信号,这就是著名的尼奎斯特定律。有两种方法可以消除混叠现象:一是直接提高采样频率,以获得更高的尼奎斯特频率,但是采样频率不能无...

2019-05-22 09:55:19 3223

原创 c++程序。函数栈溢出(Stack Overflow)问题的解决。

最近做了一个作业,关于进行矢量量化(LGB编码)的问题,通过训练码书对图片进行编码(压缩)码书也设计好了,训练出来了,一到对图片进行压缩的函数就报错说(Stack Overflow)栈溢出,我还没有定义什么大的数组,函数也没有很多形参或是指针的东西。错误就是找不出来。翻遍百度终于找到了解决方法:在项目-->属性-->链接器-->系统-->堆栈保留大小中填入数据1...

2018-11-26 18:08:59 3051

(c/c++版)LBG矢量量化码书的设计与实现

用512*512的灰度图像对码书进行训练,得到32个码矢量,对图片进行8*8的分块,并对lena图像进行矢量量化。

2018-11-26

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除