证明:lim (x->0+) x^x=1

原式: lim ⁡ x → 0 + x x \lim _{x\to 0^{+}} {x^{x}} x0+limxx
根据公式1: u ( x ) v ( x ) = e u ( x ) ln ⁡ v ( x ) u(x)^{v(x)}=e^{u(x)\ln v(x)} u(x)v(x)=eu(x)lnv(x)则原式可以化为 lim ⁡ x → 0 + e x ln ⁡ x \lim _{x\to 0^{+}} e^{x \ln x} x0+limexlnx
接下来利用倒代换进行进一步计算。(倒代换:令t=1/x,那么当x->0时,t->infinity。)
令t=1/x,则原式化为: lim ⁡ x → 0 + , t = 1 x ( t → + ∞ ) e 1 t ln ⁡ 1 t \lim _{x \to 0^{+},t = \frac{1}{x}(t\to +\infin)} {e^{\frac{1}{t}\ln {\frac{1}{t}}}} x0+,t=x1(t+)limet1lnt1 = lim ⁡ x → 0 + , t = 1 x ( t → + ∞ ) e ln ⁡ 1 t t =\lim _{x \to 0^{+},t = \frac{1}{x}(t\to +\infin)} {e^{\frac{\ln {\frac{1}{t}}}{t}}} =x0+,t=x1(t+)limetlnt1

1/t实际上就是0,那么 ∵ lim ⁡ x → 0 + ln ⁡ x = − ∞ \because \lim _{x\to0^{+}} {\ln x}=-\infin x0+limlnx= ∴ 原式 = lim ⁡ x → 0 , t = 1 x ( t → ∞ ) e − − ln ⁡ 1 t t \therefore 原式=\lim _{x \to 0,t = \frac{1}{x}(t\to\infin)} {e^{-\frac{-\ln {\frac{1}{t}}}{t}}} 原式=x0,t=x1(t)limetlnt1
那么此时直接求解 lim ⁡ t → + ∞ − ln ⁡ 1 t t \lim _{t\to +\infin}{\frac{-\ln {\frac{1}{t}}}{t}} t+limtlnt1即可。上面的是一个inf/inf式极限,验证一下是否可以使用洛必达:

这是一段洛必达法则成立时的要求。

1 ) 都为无限; 1)都为无限; 1)都为无限; 2 ) g ′ ( x ) = x ′ = 1 , ≠ 0 2)g'(x)=x'=1,\neq 0 2)g(x)=x=1,=0 3 ) lim ⁡ t → + ∞ f ′ ( t ) g ′ ( t ) = lim ⁡ t → + ∞ f ′ ( t ) 且 lim ⁡ t → + ∞ f ′ ( t ) = A 3)\lim _{t\to +\infin} \frac{f'(t)}{g'(t)}=\lim _{t\to +\infin}{f'(t)}\quad 且 \quad \lim_{t\to +\infin} f'(t)=A 3)t+limg(t)f(t)=t+limf(t)t+limf(t)=A求导得 [ − ln ⁡ 1 t ] ′ = [ − ( ln ⁡ 1 − ln ⁡ t ) ] ′ = [ ln ⁡ t ] ′ = 1 t [-\ln \frac{1}{t}]'=[-(\ln1-\ln t)]'=[\ln t]'=\frac{1}{t} [lnt1]=[(ln1lnt)]=[lnt]=t1 lim ⁡ t → + ∞ − ln ⁡ 1 t t = 1 t = 0 \lim _{t\to +\infin}{\frac{-\ln {\frac{1}{t}}}{t}}=\frac{1}{t}=0 t+limtlnt1=t1=0那么 lim ⁡ x → 0 + , t = 1 x ( t → + ∞ ) e ln ⁡ 1 t t = e 0 = 1 \lim _{x \to 0^{+},t = \frac{1}{x}(t\to +\infin)} {e^{\frac{\ln {\frac{1}{t}}}{t}}}=e^{0}=1 x0+,t=x1(t+)limetlnt1=e0=1
【注:e0=1的具体证明可以见此处
所以得出: lim ⁡ x → 0 x x = 1 \lim _{x\to 0}x^{x}=1 x0limxx=1

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Unconquerable p

给点吧~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值