要求:将数组中的数划分为两组,使得两个子数组的和的差值最小,数组中的数的取值范围为0<X<100,元素个数也是大于0小于100.如:a[]={2,4,5,6,7},得出的两组数:{2,4,6}和{5,7},abs(sum(a1)-sum(a1))=0;如:{2,5,6,10},abs(sum(2,10)-sum(5,6))=1所以:子数组为:{2,10}和{5,6}。
思路:很容易知道如果选取的某个子数组的和currentSum=sum/2,则这两个子数组的和的差值最小,即从数组中选取某些数字使得其和接近整个数组的1/2.,所以该命题本质上是一个01背包命题,原命题等价于从n各物品中选取若干个,其重量不超过sum/2,且重量达到最大
基于上述思路代码如下:
#include <iostream>
using namespace std;
const int M = 100;
int w[M];
int currentSum[M*M];
bool state[M][M];
int main()
{
int n;
while (scanf("%d ", &n) != EOF) {//输入数组元素个数
int sum = 0;
for (int i = 0; i < n; ++i) {
scanf("%d", &w[i]);
sum += w[i];//sum存储整个数组元素的