如何用iPhone快速切换WiFi和蓝牙设备?

介绍了在iOS系统中,利用控制中心快速切换WiFi和蓝牙设备的方法。自iOS 11控制中心改版、iOS 13改进后,用户可滑出控制中心,压住相关方块展开控制页面,再压住WiFi或蓝牙开关切换。还提到可用“万能控制捷径”快速开关功能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

如果想要替iPad或iPhone 快速切换WiFi 或蓝牙装置,不需要再透过iOS 设置才能更改,小编教大家直接透过iOS 控制中心就能快速更换Wi-Fi和蓝牙,能够省下不少时间和步骤就能秒切。

自从iOS 11控制中心大改版后,在iOS 13控制中心又带来了新的改进,iPhone用户可以利用控制中心切换想要的WiFi分享,又或是想要更改蓝牙连接,也可透过控制中心立即切换。

快速切换WiFi和蓝牙设备教学

先滑出iPhone控制中心页面(右上角往下滑),压住左上角「快速开关」方块(飞行、移动数据、Wi-Fi、蓝牙)不放。

这时会展开「飞行、移动数据、Wi-Fi、蓝牙、AirDrop、个人热点」控制页面,如果想切换Wi-Fi ,就压住「Wi-Fi开关」按钮不放,即可切换。

同样,压住「蓝牙开关」按钮不放,也可以立即显示目前可切换连线的蓝牙清单,点选就能更改连线不同蓝牙装置。

学会以上这招隐藏小技巧后,下次要切换WiFi网路或蓝牙装置就不需要再透过iOS设定也能快速切换,是不是感觉非常方便呢?如果想要快速开关WiFi、蓝牙、4G功能,也可以透过「万能控制捷径」来实现。

资源下载链接为: https://pan.quark.cn/s/ddc62c5d4a5d Windows Mobile 是微软在 0200 年代至 2010 年代初推出的移动操作系统,曾广泛应用于智能手机平板电脑。开发者可以借助各种库框架为其开发功能丰富的应用,其中 “32feet.NET” 是一个开源的 .NET 库,专为 .NET Framework .NET Compact Framework 提供蓝牙开发支持。它包含多个命名空间,例如 InTheHand.Devices.Bluetooth、InTheHand.Net.Personal InTheHand.Phone.Bluetooth,用于实现蓝牙设备交互功能。 InTheHand.Devices.Bluetooth 命名空间用于执行基础蓝牙操作,比如扫描附近设备、建立连接以及发现蓝牙服务等。InTheHand.Net.Personal 提供了更高级的功能,例如创建个人区域网络(PAN)、文件传输串行端口模拟,便于开发者开发跨设备的数据共享应用。而 InTheHand.Phone.Bluetooth 主要针对 Windows Phone 平台,支持蓝牙配对、消息收发蓝牙耳机控制等功能,不过由于 Windows Mobile 已停止更新,该命名空间更多适用于旧设备或项目。 压缩包中的文件列表看似是维基页面的渲染文件,可能是关于 32feet.NET 的使用教程、API 参考或示例代码。文件名如 13632.html、563803.html 等可能是页面 ID,涵盖蓝牙设备搜索、连接数据传输等不同主题。 使用 32feet.NET 进行蓝牙开发时,开发者需要注意以下几点:首先,确保开发环境已安装 .NET Framework 或 .NET Compact Framework,以及 32feet.NET
资源下载链接为: https://pan.quark.cn/s/d8a2bf0af1ac Mask R-CNN 是一种在实例分割任务中表现优异的深度学习模型,它融合了 Faster R-CNN 的目标检测功能 CNN 的像素级分类能力,能够实现图像中每个目标的定位、识别与分割。本指南将指导你如何使用 Mask R-CNN 训练自定义数据集。 你需要准备包含图像(JPEG 或 PNG 格式)标注文件(XML 或 JSON 格式)的数据集,标注文件需包含物体类别、坐标掩模信息。数据集应按照 COCO 标准组织,分为训练集、验证集可选的测试集。可以使用工具如 COCO API 或 labelme 将原始数据转换为 COCO 格式,并确保图像文件名与标注文件名一致且在同一目录下。通常按 8:2 或 9:1 的比例划分训练集验证集。 从提供的压缩包中安装所需库。运行 pip install -r requirements.txt 安装依赖,包括 TensorFlow、Keras、Cython、COCO API 等。 修改 train_test.py test_model.py 中的路径,使其指向你的数据集目录,确保 ROOT_DIR 指向数据集根目录,ANNOTATION_DIR 指向标注文件所在目录。在 config.py 中根据硬件资源训练目标调整学习率、批大小、迭代次数等参数。 运行 train_test.py 开始训练。训练时会加载预训练权重并进行微调,期间会定期保存模型,便于评估恢复。 使用 test_model.py 或 test.py 对模型进行验证测试。这些脚本会加载保存的模型权重,将其应用于新图像并生成预测结果。 预测结果为二进制掩模,需进一步处理为可读图像。可借助 COCO API 或自定义脚本将掩模合并到原始图像上,生成可视化结果。 若模型性
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值