考虑如图所示的子网。该子网采用距离向量路由算法,下面的向量刚刚到达路由器C,来自B的向量为(5,0,8,12,6,2);来自D的向量为(16,12,6,0,9,10);来自E的向量为(7,6,3,9,0,4)。经过测量,C到B,D,E的延迟分别是6,3,5.那么C到达所有结点的最短路径是(B)
A. (5,6,0,9,6,2) B. (11,6,0,3,5,8) C. (5,11,0,12,8,9) D. (11,8,0,7,4,9)
解析:
距离-向量路由算法要求每一个路由器维护一张路由表,该表给出了到达每个目的地址的已知最佳距离(最小代价)和下一步的转发地址。算法要求每个路由器定期与所有相邻路由器交换整个路由表,并更新自己的路由表项。注意从邻接结点接收到了路由表不能直接进行比较,而是要加上相邻结点传输消耗后再进行计算。
C到B的距离是6,那么从C开始通过B到达各结点的最短距离矢量是(11,6,14,18,12,8)。同理,通过D和E的最短距离矢量分别是(19,15,9,3,12,13)和(12,11,8,14,5,9)。那么C到所有结点的最短距离应该是(1,6,0,3,5,8)。
补充:题中表明C到B,D,E的延迟分别是6,3,5.
始-终 | 路径 | 路径值 | 是否选中 |
C-A | C-B-A | 6+5=11 | 是 |
C-A | C-D-A | 3+16=19 | 否 |
C-A | C-E-A | 5+7=12 | 否 |
C-B | C-B | 6 | 是 |
C-D | C-D | 3 | 是 |
C-E | C-E | 5 | 是 |
C-F | C-B-F | 6+2=8 | 是 |
C-F | C-D-F | 12+10 = 22 | 否 |
C-F | C-E-F | 5+4 = 9 | 否 |