求二叉树的深度和宽度

// 求二叉树的深度和宽度.cpp : 定义控制台应用程序的入口点。
#include "stdafx.h"
#include <iostream>
#include <queue>
using namespace std;

struct BTNode
{
	char m_value;
	BTNode *m_left;
	BTNode *m_right;
};

//先序创建二叉树
void CreatBTree(BTNode *&root)
{	
	char nValue = 0;
	cin >> nValue;
	if ('#' == nValue)
	{
		return;
	}
	else
	{
		root = new BTNode();
		root->m_value = nValue;
		CreatBTree(root->m_left);
		CreatBTree(root->m_right);
	}	
}

//求二叉树的深度
int GetDepth(BTNode *pRoot)
{
	if (pRoot == NULL)
	{
		return 0;
	}

	// 	int nLeftLength = GetDepth(pRoot->m_left);
	// 	int nRigthLength = GetDepth(pRoot->m_right);
	// 	return nLeftLength > nRigthLength ? (nLeftLength + 1) : (nRigthLength + 1);

	return GetDepth(pRoot->m_left) > GetDepth(pRoot->m_right) ? 
		(GetDepth(pRoot->m_left) + 1) : (GetDepth(pRoot->m_right) + 1);
}

//求二叉树的宽度
int GetWidth(BTNode *pRoot)
{
	if (pRoot == NULL)
	{
		return 0;
	}

	int nLastLevelWidth = 0;//记录上一层的宽度
	int nTempLastLevelWidth = 0;
	int nCurLevelWidth = 0;//记录当前层的宽度
	int nWidth = 1;//二叉树的宽度
        queue<BTNode *> myQueue;
	myQueue.push(pRoot);//将根节点入队列
	nLastLevelWidth = 1;	
	BTNode *pCur = NULL;

	while (!myQueue.empty())//队列不空
	{
		nTempLastLevelWidth = nLastLevelWidth;
		while (nTempLastLevelWidth != 0)
		{
            pCur = myQueue.front();//取出队列头元素
			myQueue.pop();//将队列头元素出对

			if (pCur->m_left != NULL)
			{
				myQueue.push(pCur->m_left);
			}

			if (pCur->m_right != NULL)
			{
				myQueue.push(pCur->m_right);
			}

			nTempLastLevelWidth--;
		}

		nCurLevelWidth = myQueue.size();
		nWidth = nCurLevelWidth > nWidth ? nCurLevelWidth : nWidth;
		nLastLevelWidth = nCurLevelWidth;
	}

	return nWidth;
}

int _tmain(int argc, _TCHAR* argv[])
{
	BTNode *pRoot = NULL;	
	CreatBTree(pRoot);
    cout << "二叉树的深度为:" << GetDepth(pRoot) << endl;
	cout << "二叉树的宽度为:" << GetWidth(pRoot) << endl;	
	system("pause");
	return 0;
}

运行结果:


在C++中,计算二叉树的最大宽度通常采用层序遍历(BFS,即广度优先搜索)的方法。这里提供一个基本步骤: 1. 定义一个队列(deque),用于存储当前层的所有节点,初始化时将根节点放入队列。 2. 初始化一个变量`width`记录当前层的节点数,以及一个变量`max_width`记录已找到的最大宽度,初始值均为1(因为至少有一层)。 3. 当队列非空时,循环进行以下操作: a. 弹出队列头部元素,并将其左右子节点(如果有)加入队列。 b. 更新当前层的宽度,如果节点数大于`max_width`,则更新`max_width`。 4. 遍历完所有节点后,`max_width`即为二叉树的最大宽度。 以下是伪代码简化版本的C++代码实现: ```cpp #include <iostream> #include <queue> using namespace std; // 假设二叉树节点定义为 Node 类 struct Node { int val; Node* left; Node* right; }; int maxDepth(Node* root) { if (root == nullptr) return 0; queue<Node*> q; q.push(root); int depth = 0, width = 1; // 初始深度为1,宽度为1 while (!q.empty()) { int size = q.size(); for (int i = 0; i < size; ++i) { Node* node = q.front(); q.pop(); if (node->left) q.push(node->left); if (node->right) q.push(node->right); } width = max(width, size); // 更新宽度 depth++; } return depth; } int main() { Node* root = ... // 填充二叉树节点 int maxWidth = maxDepth(root); cout << "The maximum width of the binary tree is: " << maxWidth << endl; return 0; } ```
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值