硅基流动(AI工具)-下载指南

硅基流动官网,在产品处选择 SiliconCloud 下载

注册时填我的邀请码共同可拥有2000万个Token!

创建API 密钥并复制到轨迹流动里面就可以了

复制到cherry studio-设置-硅基流动-API密钥

### 关于流动API与OpenAI集成使用指南 #### 3.1 流动API简介 流动提供了强大的API接口,允许开发者轻松调用其预训练的语言模型服务。这些服务涵盖了多种自然语言处理任务,如文本嵌入、语义相似度计算等。为了更好地支持开发者的应用需求,流动还特别优化了与中国本土环境相适应的功能特性[^2]。 #### 3.2 OpenAI API概述 OpenAI 提供了一系列先进的人工智能工具和服务,其中最著名的是GPT系列大语言模型。除了提供完整的在线访问外,OpenAI同样开放了一套RESTful风格的HTTP API给外部开发者用于集成到自有应用程序中去。这使得任何拥有有效API密钥的人都可以方便地请求来自云端服务器端的大规模机器学习算法运算结果[^1]。 #### 3.3 集成步骤说明 ##### Python代码实现示例 下面是一个简单的Python脚本例子,展示了如何同时利用流动和OpenAI两家服务商所提供的API来进行文档向量化表示: ```python import os from dbgpt.rag.embedding import OpenAPIEmbeddings # 初始化流动embedding对象 openai_embeddings = OpenAPIEmbeddings( api_url="https://api.siliconflow.cn/v1/embeddings", api_key=os.getenv("SILICONFLOW_API_KEY"), model_name="BAAI/bge-large-zh-v1.5" ) texts = ["Hello, world!", "How are you?"] res_siliconcloud = openai_embeddings.embed_documents(texts) print("SiliconCloud embeddings:", res_siliconcloud) # 假设这里也有一个对应的初始化方法来创建OpenAI的embeddings实例 # 这里仅作为示意并未给出具体实现细节 openai_embedding_instance = initialize_openai_embedder() res_openai = openai_embedding_instance.embed_documents(texts) print("OpenAI embeddings:", res_openai) ``` 此段程序首先定义了一个`OpenAPIEmbeddings`类的对象,该对象被用来封装对流云平台上的特定版本中文BERT模型(`model_name`)发起远程过程调用所需的一切参数设置;接着传入待转换为固定长度特征向量形式的一组字符串列表并执行实际的数据传输逻辑;最后打印输出得到的结果以便观察对比不同来源产生的差异之处。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值