自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(128)
  • 问答 (1)
  • 收藏
  • 关注

原创 李宏毅机器学习

• 例如:用汽车(监督学习)完成客运(分类任务),用轮船(无监督学习)完成货运(聚类任务)。• 自监督学习(无监督生成标签+监督训练)用于预训练模型,再微调分类任务。• 强化学习的策略学习可视为动态分类(选择动作)或回归(预测价值函数)。• 误区:认为“分类是监督学习的一种”或“聚类是一种无监督学习”。• 分类任务必须通过监督学习(需标签)或半监督学习(部分标签)。• 种类(Types):回答“模型如何学习”(框架)。• 任务(Tasks):回答“模型要做什么”(目标)。某些复杂任务可能结合多种学习种类。

2025-05-08 11:35:39 433

原创 bert项目解析

csv.reader 默认的英文逗号(,)把一行分割成列表。

2025-04-16 23:02:51 231

原创 python的import类与模块区别

在 Python 中,import语句既可以用于导入,也可以用于导入、函数、变量等。是一个包含 Python 定义和语句的文件(通常以.py为扩展名)。是定义在模块中的对象蓝图或模板。类是模块的一部分。因此,当你通过import导入一个模块时,你可以进一步访问该模块中定义的类、函数或变量。当你使用import导入一个模块时,你实际上是在加载整个模块的内容。可以通过模块名来访问模块中的类、函数或变量。

2025-04-16 16:31:13 571

原创 多层感知机与全连接神经网络关系解析

感知机(Perceptron)、多层感知机(MLP,Multilayer Perceptron)和全连接神经网络(FCNN,Fully Connected Neural Network)是神经网络发展过程中密切相关的概念,但它们有明确的区别。

2025-04-12 16:41:40 801

原创 NAT和VPN的联系

理解VPN和NAT的区别以及它们如何工作是非常重要的。虽然从某种角度来看,你可以说VPN在某些方面类似于“两个NAT”加上加密解密的过程,但实际上,这种类比并不完全准确,因为两者的核心功能和技术实现有显著的不同。

2025-03-21 17:39:25 544

原创 transformer bert 多头自注意力

1

2025-03-14 00:15:22 764

原创 深度学习 bert流程

在自然语言处理任务中,特别是使用预训练模型如BERT时,文本首先通过一个分词器(例如)转换为一系列的token IDs。这些ID是每个词或子词单元在词汇表(包含汉字、英文单词、标点符号)中的索引位置。如果输入句子是,经过分词器处理后,得到的token IDs可能是[1, 2],这里1和2分别对应词汇表中的'hello'和'world'。

2025-03-13 16:41:36 565

原创 深度学习 bert与Transformer的区别联系

BERT(Bidirectional Encoder Representations from Transformers)和Transformer都是现代自然语言处理(NLP)中的重要概念,但它们代表不同的层面。理解这两者之间的区别与联系有助于更好地掌握它们在NLP任务中的应用。

2025-03-13 14:59:26 796

原创 深度学习 常见优化器

另外,用户之前的问题是关于论文格式调整的,现在突然转向优化器,可能是他们在撰写论文时需要涉及相关内容,或者是学习过程中遇到了这个问题。最后,检查是否有遗漏的重要优化器,比如Adadelta、Nadam,或者最近的一些改进版本如AdamW、LAMB等,是否需要包含进来。然后,考虑用户可能对某些术语不太熟悉,比如动量、自适应学习率这些概念,需要用简单易懂的语言说明。总结下来,我需要组织一个结构清晰、内容详实的回答,涵盖主要优化器的原理、优缺点、适用场景,并给出使用建议,帮助用户全面理解并应用这些优化器。

2025-03-12 18:12:39 1359

原创 交叉熵损失函数和softmax激活函数的关系

交叉熵损失(Cross-Entropy Loss)和Softmax函数在机器学习尤其是深度学习中经常一起使用,特别是在多分类问题中。它们之间的关系主要体现在如何将模型的输出转化为类别概率以及如何计算预测值与真实标签之间的误差。

2025-03-12 16:32:20 548

原创 计算机网络常见疑问

在计算机网络中,TCP/IP模型与OSI五层模型的分层差异确实容易引发疑问,尤其是关于数据链路层(五层模型)的功能是否实际存在。理解这一点,可以避免混淆模型的理论抽象与实际协议的工程实现。:简化分层,贴近实际协议(如以太网、IP、TCP等)。:实际包含数据链路层(MAC、LLC)和物理层的功能。:教学清晰,明确区分逻辑功能,便于理解各层职责。(合并数据链路层和物理层)。

2025-03-04 16:03:53 1269

原创 深度学习_第二轮

确实,当进行模型训练时,(x) 和 (y) 分别代表输入特征和对应的输出值,它们以数据点对的形式存在,一个数据集中通常包含多对这样的数据。因此,即使 (x) 和 (y) 在处理每个样本时被视为常量,为了优化模型参数,我们需要遍历数据集中的所有 ((x_i), (y_i)) 对,利用它们提供的信息来指导权重的更新方向。这意味着,在实际操作中,虽然在计算单个样本的偏导数时 (x_i) 和 (y_i) 被视为常量,但这一过程会针对数据集中的每一个样本重复执行。

2025-03-01 11:10:36 612

原创 深度学习_学习笔记

csv 是 Python 标准库的一部分,适合处理简单的 CSV 文件,不支持复杂的数据操作;而pandas直接支持 Excel、CSV 等,也可复杂的数据处理。都可用于处理csv文件(注意csv文件不是excel文件)

2025-02-09 12:05:19 407

原创 对深度学习中的基本概念—梯度的理解

首先,我们定义一个简单的例子,来模拟一下深度学习的学习过程。已知:有一个正确的数据对(或者叫样本),(x,y)其中,x代表输入值,y代表输出值。这里我们假定x等于 1, y也等于1。也就是说这个已知的、正确的数据对为(1,1)求:根据上面的数据对,求出y和x之间的映射关系该如何求呢?解:我们设计一个神经网络来求这个映射关系。简单又不失一般性,我们设计一个只有一个参数w的神经网络。用这个简单的神经网络来表示x和y之间的映射关系的话,如下表示:Y = wx。

2025-02-05 23:08:53 1085

原创 2024版Clion debug无法查看函数内数组内容 解决办法

在Evaluate expression中输入。

2024-09-30 21:52:56 530

原创 数据结构李春葆笔记

结点层次/树高:根节点为第一层。

2024-08-12 20:46:28 321

原创 数学希腊符号

【代码】数学希腊符号。

2024-08-04 09:03:04 7163

原创 考研初等数学

同指不同底乘法(ab)=ab。

2024-07-20 18:02:34 460

原创 武忠祥李永乐强化笔记

lnx1x2​。

2024-07-18 08:54:22 846

原创 数据结构教材关于C/C++的研究

如果在定义class A时,A域的类型是未定义的class A而不是指向class A对象的指针类型,编译器会尝试在编译时分配一块内存给A域,但由于class A的定义还没有出现,因此无法确定A域需要多少空间。这就导致了编译错误。改用指针可以解决这个问题,因为指针的大小是固定的,与指向的类型无关。在定义class A时,编译器只需要知道A域是一个指针类型,就能正确地分配内存。同时,在实际使用A域时,可以通过对指针进行解引用来访问实际的class A对象。

2024-06-27 11:52:48 333

原创 880基础题查漏补缺

无穷大包括+∞与-∞。

2024-06-23 10:51:23 288

原创 李永乐线代笔记

方程组的变换就是初等行变换。

2024-06-14 11:55:10 412

原创 软件设计师

运算:小阶对齐大阶。

2024-03-17 17:37:41 395

原创 张宇30讲学习笔记

x​是算数平方根,一定≥0;x2​=|x|

2024-03-02 21:40:58 2725

原创 流量控制 可靠传输 滑动窗口之间的关系 以及 流量控制和可靠传输的关系

流量控制、可靠传输和滑动窗口是网络通信中的三个重要概念,它们之间有密切的关系。流量控制是指在数据传输过程中控制发送方发送数据的速率,以避免接收方无法及时处理大量数据而导致的数据丢失或拥塞。流量控制通过使用滑动窗口机制来实现。发送方和接收方都维护一个窗口大小,发送方根据接收方的窗口大小来决定发送数据的数量,接收方根据自身处理能力来调整窗口大小。可靠传输是指在数据传输过程中保证数据的完整性和可靠性,即确保数据能够按照正确的顺序到达接收方,并且没有丢失或损坏。滑动窗口机制也可以用于实现可靠传输。

2024-02-20 17:33:39 536

原创 vue3 Element Plus 基于webstorm练习

vue是前端框架,Elemen是组件库。

2024-02-14 11:06:36 1421

原创 为什么要使用Node.JS

每一种解析器都是一个运行环境,不但允许js定义各种数据结构,进行各种计算,还允许js使用允许环境提供的内置对象和方法做一些事情。NodeJS的作者说,他创造NodeJS的目的是为了实现高性能Web服务器,他首先看重的是事件机制和异步IO模型的优越性,而不是JS。JS没有自带IO功能,天生就用于处理浏览器中的DOM事件,并且拥有一大群程序员,因此就成为了天然的选择。脚本语言需要一个解析器才能运行,JavaScript是脚本语言,在不同的位置有不一样的解析器,如写入html的js语言,浏览器是它的解析器角色。

2024-02-01 17:48:52 1386

原创 react和antd学习笔记 基于webstorm练习

react是前端框架,antd是组件库。

2024-02-01 17:16:04 704 1

原创 前端框架和组件库的区别与联系

组件库是一种可复用的UI组件集合,它提供了一系列已经封装好的UI组件,开发者可以直接使用这些组件来构建界面。组件库通常包括了按钮、表单、导航、弹窗等常见的UI元素,以及一些特定功能的组件,如日历、图表等。前端框架提供了整体的架构和规范,组件库则提供了可复用的UI组件,开发者可以在框架的基础上使用组件库来构建界面。同时,一些前端框架也提供了自己的组件库,如React的Ant Design和Vue的Element UI。使用方式不同:前端框架需要开发者按照框架提供的规范进行开发,使用框架提供的API和工具;

2024-02-01 17:12:11 1292

原创 计算机网络复试

1。

2024-01-20 09:11:09 704

原创 复试情报准备

英语自我介绍,介绍完老师会根据你的回答用英语问你问题,比如介绍一下你的本科学校,或者家乡什么的。计网过一遍,会问两道题。接下来是重点,我当时是根据我成绩单,问了我本科学过的科目,比如python,数据库啥的,最后还问了你对人工智能的一些看法,如果你有参加竞赛的话,也会问一些。

2023-12-25 10:24:35 480

原创 数据结构题型

数据处理的单位:数据元素矩阵压缩存储。

2023-11-22 15:57:30 662

原创 考研:政治

从团结的愿望出发,经过批评或者斗争,分清是非,在新的基础上达到新的团结。

2023-11-21 23:24:46 146

原创 数二真题强化

高等数学定积分线性代数

2023-11-05 11:06:54 680

原创 考研数据结构

森林与树

2023-10-11 19:45:50 246

原创 数据结构教程索引

磁盘:操作系统p304。

2023-10-06 23:09:24 113

原创 考研操作系统

第3章 内存管理

2023-09-20 00:03:25 124

原创 macOS技巧

1、外接普通键盘,windows键代替ctrl,类似ctrl+A、ctrl+C在mac是windows+A、windows+C。2、截图windows+shift+4。

2023-05-28 19:17:26 136

原创 PotPlayer会造成obs录制声音忽大忽小

用obs录制视频后用PotPlayer播放声音忽大忽小,其实视频是没问题的,在PotPlayer设置中取消。

2023-04-05 00:02:44 806

原创 C语言学习笔记

两个scanf,第二个scanf是%c时,第一个scanf会造成缓冲区残留\n,下一个scanf会自动接收上一个scanf遗留的\n,所以不会暂停,解决办法是在两个scanf之间加上fflush(stdin)int arr[10]是静态申请的内存,在栈中,用malloc(i)动态申请内存,在堆中malloc()返回的是无类型指针,所以需要强制类型转换,如(char *)malloc(size);2、指针是地址,不同类型的数据的指针有对应的指针类型,如int类型数据的指针的数据类型是int *

2023-03-29 23:45:43 787

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除