强化学习入门系列三VS强化游戏gym环境的使用

本文介绍了OpenAI的Gym库,它为强化学习提供了丰富的实验环境,包括经典控制、算法化问题、Atari游戏和机器人仿真等。通过env=gym.make(环境名)等方法可以方便地操作和展示环境。文章通过小车翻沟和冰冻湖游戏两个例子,展示了如何在Gym中进行游戏环境的选择和应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. Gym库的使用方法

Gym是OpenAI推出的免费的强化学习实验环境,支持python语言。

Gym拥有各种环境,从 简单到复杂,涉及许多不同种类的数据。包括:
  >经典控制和玩具文字:完成小规模的任务,大部分来自RL文献。用于入门。
  >算法化:执行计算,例如添加多位数和反转顺序。
  >Atari:经典的Atari游戏。使用易于安装的Arcade学习环境。
  >2D和3D机器人:在仿真中控制机器人。这些任务使用了MuJoCo物理引擎,该引擎设计用于快速而准确的机器人仿真。
  
gym库的安装和内置游戏的查看在强化学习系列博客的第一篇第六部分有介绍。强化学习入门系列一

Gym库的使用方法是:用env=gym.make(环境名)加载环境,用env.reset()初始化环境,用env.step(动作)执行一步环境,用env.render()显示环境,用env.close()关闭环境。

2. Gym中游戏的基本信息

在选择gym中的游戏作为算法的实验环境之前,必须了解这个游戏的环境设置。
一个方法是查看游戏环境的源码,另一个方法是直接调用一些接口查看环境的简单信息。

import gym

env = gym.make('MountainCar-v0')
print('观测空间={}'.format(env.observation_space))
print('动作空间={}'.format(env.action_space))
print('观测范围={}~{}'.format(env.observation_space.low, env.observation_space.high))
print('动作数={}'.format(env.action_space.n))

结果如下所示:
在这里插入图片描述

3. Gym游戏的几个例子

3.1 小车翻沟

import gym
import time

'''
    基于强化学习实现小车自适应翻越小沟
'''
class BespokeAgent:
    def __init__(self, env):
        pass

    def decide(self, observation):
        position, velocity = observation
        lb = min
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值