KMP算法

1.nex数组

对于长度为 n n n的字符串 S S S,定义 n e x i = m a x { x ∣ x ∈ { 1 , 2 , . . . , i − 1 } } nex_i=max\{x|x\in \{1,2,...,i-1\}\} nexi=max{xx{1,2,...,i1}} x x x满足 S 1 S 2 . . . . S x = S i − x + 1 S i − x + 2 . . . S i S_1S_2....S_x=S_{i-x+1}S_{i-x+2}...S_i S1S2....Sx=Six+1Six+2...Si。特别地,若不存在这样的 x x x,则 n e x i = 0 nex_i=0 nexi=0

2.归纳法求解nex数组

i = 1 i=1 i=1,显然有 n e x 1 = 0 nex_1=0 nex1=0
i > 1 i>1 i>1,设当前已经求出了 n e x 1 , n e x 2 , . . . , n e x i − 1 nex_1,nex_2,...,nex_{i-1} nex1,nex2,...,nexi1,现求解 n e x i nex_i nexi
在这里插入图片描述

如图,不妨设 n e x i − 1 = j , n e x j = k , n e x k = h , n e x h = . . . nex_{i-1}=j,nex_j=k,nex_k=h,nex_h=... nexi1=j,nexj=k,nexk=h,nexh=...
A , B , C , D , E , F A,B,C,D,E,F A,B,C,D,E,F为对应填充区域表示的字符串,则由 n e x nex nex数组的定义,有 A = B , C = D , E = F A=B,C=D,E=F A=B,C=D,E=F

S j + 1 = S ( i − 1 ) + 1 = S i S_{j+1}=S_{(i-1)+1}=S_i Sj+1=S(i1)+1=Si,则 n e x i = j + 1 = n e x i − 1 + 1 nex_i=j+1=nex_{i-1}+1 nexi=j+1=nexi1+1
证:由 A = B , S j + 1 = S i ⇒ A + S j + 1 = B + S i A=B,S_{j+1}=S_{i}\Rightarrow A+S_{j+1}=B+S_i A=B,Sj+1=SiA+Sj+1=B+Si,再证明 j + 1 j+1 j+1是最大的,设存在 j + 1 < x < i j+1<x<i j+1<x<i使得 n e x i = x nex_i=x nexi=x,则有 S 1 S 2 . . . S x − 1 S x = S i − x + 1 S i − x + 2 . . . S i − 1 S i ⇒ S 1 S 2 . . . S x − 1 = S i − x + 1 S i − x + 2 . . . S i − 1 S_1S_2...S_{x-1}S_x=S_{i-x+1}S_{i-x+2}...S_{i-1}S_i\\\Rightarrow S_1S_2...S_{x-1}=S_{i-x+1}S_{i-x+2}...S_{i-1} S1S2...Sx1Sx=Six+1Six+2...Si1SiS1S2...Sx1=Six+1Six+2...Si1从而有 n e x i − 1 = x − 1 > j nex_{i-1}=x-1>j nexi1=x1>j n e x i = j nex_{i}=j nexi=j矛盾,故 j + 1 j+1 j+1是最大的。

S j + 1 ≠ S i S_{j+1}\neq S_i Sj+1=Si,则对于位置 k k k,若 s k + 1 = S i s_{k+1}=S_i sk+1=Si,则 n e x i = k + 1 nex_i=k+1 nexi=k+1.
证: A = C + x + D = B , S k + 1 = S i ⇒ C + S k + 1 = D + S i A=C+x+D=B,S_{k+1}=S_i\Rightarrow C+S_{k+1}=D+S_i A=C+x+D=B,Sk+1=SiC+Sk+1=D+Si,同理可证 k + 1 k+1 k+1是最大的。
S k + 1 ≠ S i S_{k+1}\neq S_i Sk+1=Si,继续递归检查 n e x k , n e x n e x k , . . . nex_k,nex_{nex_k},... nexk,nexnexk,...即可。
特别的,递归到 n e x 0 nex_0 nex0后则 n e x i = 0 nex_i=0 nexi=0(特别定义 n e x 0 = − 1 nex_0=-1 nex0=1)。

void kmp_next(int n,char *s)
{
    //n is the length of string s
    //s indexes labeled from 1 to n
    nex[0]=-1;
    for(int i=1;i<=n;i++)
    {
        int k=nex[i-1];
        while(k!=-1&&s[k+1]!=s[i]) k=nex[k];
        nex[i]=k+1;
    }
}

3.利用nex数组进行字符串匹配

在一个字符串 T T T中查找字符串 S S S的出现次数。设有 T j − i + 1 T j − i + 2 . . . . T j = S 1 S 2 . . . S i T_{j-i+1}T_{j-i+2}....T_j=S_1S_2...S_i Tji+1Tji+2....Tj=S1S2...Si T j + 1 ≠ S i + 1 T_{j+1}\neq S_{i+1} Tj+1=Si+1,只需让 i i i回溯到 n e x i nex_i nexi再继续拿 S n e x i + 1 S_{nex_i+1} Snexi+1 T j + 1 T_{j+1} Tj+1进行匹配即可,因为由 n e x nex nex数组的性质有 S 1 S 2 . . . S n e x i = S i − n e x i + 1 S i − n e x i + 2 . . . S i = T j − n e x i + 1 T j − n e x i + 2 . . . T j S_1S_2...S_{nex_i}=S_{i-nex_i+1}S_{i-nex_i+2}...S_i=T_{j-nex_i+1}T_{j-nex_i+2}...T_j S1S2...Snexi=Sinexi+1Sinexi+2...Si=Tjnexi+1Tjnexi+2...Tj

int kmp_match(int n,int m,char *s,char *t)
{
    //n is the length of string s
    //s indexes labeled from 1 to n
    //m is the length of string s
    //t indexes labeled from 1 to m
    int match_count=0;
    for(int i=0,j=0;i<m;i++)
    {
        while(j!=-1&&s[j+1]!=t[i+1])
            j=nex[j];
        j++;
        if(j==n)
        {
            match_count++;
            j=nex[j];
        }
    }
    return match_count;
}
  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值