from numpy import *
import xlrd
##已知数据
q1='F:\共享车选址调度\共享汽车数据\候选点之间的OD(13).xlsx'
T1='F:\共享车选址调度\共享汽车数据\候选点之间的最短期望时间Tik(13).xlsx'
wt1='F:\共享车选址调度\共享汽车数据\需求中心到备选点的步行时间(50行13列).xlsx'
D1='F:\共享车选址调度\共享汽车数据\每个需求中心的需求量(50网格).xlsx'
# ####excel转为矩阵
def excel_to_matrix(path,a): #路径,sheet
table = xlrd.open_workbook(path).sheets()[a]#获取第一个sheet表
row = table.nrows # 行数
col = table.ncols # 列数
datamatrix = np.zeros((row, col))#生成一个nrows行ncols列,且元素均为0的初始矩阵
for x in range(col):
cols = np.matrix(table.col_values(x)) # 把list转换为矩阵进行矩阵操作
datamatrix[<
遗传算法目标函数的表示
最新推荐文章于 2023-03-26 23:59:14 发布
本文深入探讨遗传算法的基础,重点解析目标函数的构建与优化,揭示如何利用遗传算法解决复杂问题并找到全局最优解。
摘要由CSDN通过智能技术生成